Instruction Set Nomenclature

Status Register (SREG)

SREG:

Status Register

Carry Flag

Zero Flag

Negative Flag

Two’s complement overflow indicator

N OV, For signed tests

Half Carry Flag

Transfer bit used by BLD and BST instructions
Global Interrupt Enable/Disable Flag

Registers and Operands

Rd:
Rr:
R:

Destination (and source) register in the Register File
Source register in the Register File

Result after instruction is executed

Constant data

Constant address

Bit in the Register File or I/O Register (3-bit)

Bit in the Status Register (3-bit)

Indirect Address Register

(X=R27:R26, Y=R29:R28 and Z=R31:R30)

I/O location address

Displacement for direct addressing (6-bit)

Y ()

8-bit AVR'

Instruction Set

ATMEL

I)

Rev. 0856D-AVR-08/02

ATMEL

I/O Registers

RAMPX, RAMPY, RAMPZ
Registers concatenated with the X-, Y-, and Z-registers enabling indirect addressing of the whole data space on MCUs with
more than 64K bytes data space, and constant data fetch on MCUs with more than 64K bytes program space.

RAMPD

Register concatenated with the Z-register enabling direct addressing of the whole data space on MCUs with more than 64K
bytes data space.

EIND

Register concatenated with the instruction word enabling indirect jump and call to the whole program space on MCUs with
more than 64K bytes program space.

Stack

STACK: Stack for return address and pushed registers

SP: Stack Pointer to STACK

Flags

! Flag affected by instruction

0: Flag cleared by instruction

1 Flag set by instruction

- Flag not affected by instruction

2 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

The Program and Data Addressing Modes

The AVR Enhanced RISC microcontroller supports powerful and efficient addressing modes for access to the Program
memory (Flash) and Data memory (SRAM, Register file, /O Memory, and Extended 1/0O Memory). This section describes
the various addressing modes supported by the AVR architecture. In the following figures, OP means the operation code
part of the instruction word. To simplify, not all figures show the exact location of the addressing bits. To generalize, the
abstract terms RAMEND and FLASHEND have been used to represent the highest location in data and program space,
respectively.

Note: Not all addressing modes are present in all devices. Refer to the device spesific instruction summary.
Register Direct, Single Register Rd

Figure 1. Direct Single Register Addressing
REGISTER FILE

0
15 4 0
oP Rd
d
31
The operand is contained in register d (Rd).
Register Direct, Two Registers Rd and Rr
Figure 2. Direct Register Addressing, Two Registers
REGISTER FILE
0
15 9 54 0
oP Rr Rd

31

Operands are contained in register r (Rr) and d (Rd). The result is stored in register d (Rd).

AIMEL 3

0856D-AVR-08/02 I ©

ATMEL

I/O Direct

Figure 3. 1/O Direct Addressing
/O MEMORY

OoP Rr/Rd A

63

Operand address is contained in 6 bits of the instruction word. n is the destination or source register address.

Note: Some complex AVR Microcontrollers have more peripheral units than can be supported within the 64 locations reserved in the
opcode for I/O direct addressing. The extended 1/0O memory from address 64 to 255 can only be reached by data addressing,
not 1/0 addressing.

Data Direct

Figure 4. Direct Data Addressing

Data Space
31 2019 16 0x0000

OoP Rr/Rd

Data Address
15 0

RAMEND

A 16-bit Data Address is contained in the 16 LSBs of a two-word instruction. Rd/Rr specify the destination or source
register.

4 AVR Instruction Set —— s
0856D-AVR-08/02

AVR Instruction Set

Data Indirect with Displacement

Figure 5. Data Indirect with Displacement

Data Space

0x0000
15 0

Y OR Z - REGISTER

OP Rr/Rd q |

RAMEND

Operand address is the result of the Y- or Z-register contents added to the address contained in 6 bits of the instruction
word. Rd/Rr specify the destination or source register.

Data Indirect

Figure 6. Data Indirect Addressing

Data Space

0x0000
15 0

X, YOR Z - REGISTER |

RAMEND

Operand address is the contents of the X-, Y-, or the Z-register. In AVR devices without SRAM, Data Indirect Addressing is
called Register Indirect Addressing. Register Indirect Addressing is a subset of Data Indirect Addressing since the data
space form 0 to 31 is the Register File.

AIMEL 5

0856D-AVR-08/02 I ®

ATMEL

Data Indirect with Pre-decrement

Figure 7. Data Indirect Addressing with Pre-decrement

Data Space

0x0000
15

E| X, Y OR Z - REGISTER

RAMEND

The X,- Y-, or the Z-register is decremented before the operation. Operand address is the decremented contents of the X-,
Y-, or the Z-register.

Data Indirect with Post-increment

Figure 8. Data Indirect Addressing with Post-increment

Data Space

0x0000
15 0

;l X,YOR Z - REGISTER

()

RAMEND

The X-, Y-, or the Z-register is incremented after the operation. Operand address is the content of the X-, Y-, or the Z-regis-
ter prior to incrementing.

6 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

Program Memory Constant Addressing using the LPM, ELPM, and SPM Instructions

Figure 9. Program Memory Constant Addressing
PROGRAM MEMORY

0x0000

15 10
Z - REGISTER | I—

N A
LSB

FLASHEND

Constant byte address is specified by the Z-register contents. The 15 MSBs select word address. For LPM, the LSB selects
low byte if cleared (LSB = 0) or high byte if set (LSB = 1). For SPM, the LSB should be cleared. If ELPM is used, the
RAMPZ Register is used to extend the Z-register.

Program Memory with Post-increment using the LPM Z+ and ELPM Z+ Instruction

Figure 10. Program Memory Addressing with Post-increment
PROGRAM MEMORY

0x0000

15 10
—)l Z - REGISTER

LSB

(D

FLASHEND

Constant byte address is specified by the Z-register contents. The 15 MSBs select word address. The LSB selects low byte
if cleared (LSB = 0) or high byte if set (LSB = 1). If ELPM Z+ is used, the RAMPZ Register is used to extend the Z-register.

AIMEL 7

0856D—-AVR—-08/02 I

ATMEL

Direct Program Addressing, JMP and CALL

Figure 11. Direct Program Memory Addressing
PROGRAM MEMORY

31 16
OoP 6 MSB
16 LSB
15 0
21 0
PC

Program execution continues at the address immediate in the instruction word.
Indirect Program Addressing, IJMP and ICALL

Figure 12. Indirect Program Memory Addressing
PROGRAM MEMORY

| Z - REGISTER

| oC 5

0x0000

FLASHEND

0x0000

FLASHEND

Program execution continues at address contained by the Z-register (i.e., the PC is loaded with the contents of the Z-

register).

8 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

Relative Program Addressing, RIMP and RCALL

Figure 13. Relative Program Memory Addressing
PROGRAM MEMORY

0x0000

B ”

FLASHEND

Program execution continues at address PC + k + 1. The relative address k is from -2048 to 2047.

AIMEL 9

0856D-AVR-08/02 I ®

Conditional Branch Summary

ATMEL

Test Boolean Mnemonic Complementary Boolean Mnemonic Comment
Rd > Rr Z«(NOV)=0 BRLT® Rd < Rr Z+(NDOV)=1 BRGE* Signed
Rd = Rr (NOV)=0 BRGE Rd < Rr (NOV)=1 BRLT Signed
Rd =Rr Z=1 BREQ Rd # Rr Z=0 BRNE Signed
Rd < Rr Z+(NOV)=1 BRGEW Rd > Rr Z«(NOV)=0 BRLT* Signed
Rd < Rr (NOV)=1 BRLT Rd = Rr (NOV)=0 BRGE Signed
Rd > Rr C+2=0 BRLOW Rd < Rr c+z=1 BRSH* Unsigned
Rd = Rr C=0 BRSH/BRCC Rd < Rr c=1 BRLO/BRCS Unsigned
Rd =Rr Z=1 BREQ Rd # Rr Z=0 BRNE Unsigned
Rd < Rr c+z=1 BRSH® Rd > Rr C+2=0 BRLO* Unsigned
Rd < Rr c=1 BRLO/BRCS Rd = Rr C=0 BRSH/BRCC Unsigned
Carry c=1 BRCS No carry C=0 BRCC Simple
Negative N=1 BRMI Positive N=0 BRPL Simple
Overflow V=1 BRVS No overflow V=0 BRVC Simple
Zero zZ=1 BREQ Not zero Z=0 BRNE Simple

Note: 1. Interchange Rd and Rr in the operation before the test, i.e., CP Rd,Rr -~ CP Rr,Rd

10 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

Complete Instruction Set Summary

Instruction Set Summary

#Clock
Mnemonics | Operands | Description Operation Flags Note
Arithmetic and Logic Instructions
ADD Rd, Rr Add without Carry Rd « Rd +Rr ZCNVSH | 1
ADC Rd, Rr Add with Carry Rd « Rd+Rr+C Z,C,N,V,S,H 1
ADIW Rd, K Add Immediate to Word Rd+1:Rd « Rd+1:Rd + K Z,CN\V,S 2@
SUB Rd, Rr Subtract without Carry Rd -« Rd -Rr ZCNVSH | 1
SUBI Rd, K Subtract Immediate Rd -« Rd-K ZCNVSH |1
SBC Rd, Rr Subtract with Carry Rd « Rd-Rr-C ZCNVSH | 1
SBCI Rd, K Subtract Immediate with Carry Rd -« Rd-K-C ZCNVSH | 1
SBIW Rd, K Subtract Immediate from Word Rd+1:Rd « Rd+1:Rd - K Z,CN\V,S 2®
AND Rd, Rr Logical AND Rd -« Rd « Rr ZN,V,S 1
ANDI Rd, K Logical AND with Immediate Rd « Rd+ K Z,N,V,S 1
OR Rd, Rr Logical OR Rd « RdvRr Z,N,V,S 1
ORI Rd, K Logical OR with Immediate Rd « RdvK Z,N,V,S 1
EOR Rd, Rr Exclusive OR Rd -« Rd O Rr ZN,V,S 1
COoM Rd One’s Complement Rd —~ $FF - Rd Z,C\N\V,S 1
NEG Rd Two’s Complement Rd ~ $00 - Rd ZCNVSH | 1
SBR Rd,K Set Bit(s) in Register Rd -« RdvK Z,N,V,S 1
CBR Rd,K Clear Bit(s) in Register Rd ~ Rd ¢ ($FFh - K) Z,N,\V,S 1
INC Rd Increment Rd -« Rd +1 ZN,\V,S 1
DEC Rd Decrement Rd « Rd-1 ZN,\V,S 1
TST Rd Test for Zero or Minus Rd -« Rd * Rd ZN,\V,S 1
CLR Rd Clear Register Rd -« RdORd ZN,V,S 1
SER Rd Set Register Rd — $FF None 1
MUL Rd,Rr Multiply Unsigned R1:RO « Rd x Rr (UU) Z,C 2®
MULS Rd,Rr Multiply Signed R1:RO « Rd x Rr (SS) Z,C 2®
MULSU Rd,Rr Multiply Signed with Unsigned R1:RO « Rd x Rr (SU) Z,C 2®
FMUL Rd,Rr Fractional Multiply Unsigned R1:RO « (Rd x Rr)<<1 (UU) Z,C 2®
FMULS Rd,Rr Fractional Multiply Signed R1:RO « (Rd x Rr)<<1 (SS) Z,C 2®
FMULSU Rd,Rr Fractional Multiply Signed with R1:RO « (Rd x Rr)<<1 (SU) Z,C 2®
Unsigned
Branch Instructions

RJIMP k Relative Jump PC - PC+k+1 None 2
1IMP Indirect Jump to (Z) PC(15:0) — Z, PC(21:16) — O None 2®

0856D-AVR-08/02

ATMEL

Y R

11

ATMEL

Instruction Set Summary (Continued)

#Clock
Mnemonics | Operands | Description Operation Flags Note
EIIMP Extended Indirect Jump to (2) PC(15:0) — Z, PC(21:16) — EIND None 2®
IMP k Jump PC « k None 3W
RCALL k Relative Call Subroutine PC - PC+k+1 None 3/4@
ICALL Indirect Call to (2) PC(15:0) — Z, PC(21:16) — 0 None 3/40®
EICALL Extended Indirect Call to (2) PC(15:0) — Z, PC(21:16) — EIND None 4 D)
CALL k Call Subroutine PC < k None 4/5 M@
RET Subroutine Return PC — STACK None 4/5@
RETI Interrupt Return PC — STACK [4/5®
CPSE Rd,Rr Compare, Skip if Equal if Rd=Rr) PC -« PC+2o0r3 None 1/2/3
CP Rd,Rr Compare Rd - Rr Z,CN,V,S,H 1
CPC Rd,Rr Compare with Carry Rd-Rr-C Z,CN,V,S,H 1
CPI Rd,K Compare with Immediate Rd - K Z,C,NV,S,H 1
SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC -« PC+2o0r3 None 1/2/3
SBRS Rr, b Skip if Bit in Register Set if (Rr(b)=1) PC -« PC+2o0r3 None 1/2/3
SBIC A b Skip if Bit in I/O Register Cleared if(I1O(A,b)=0) PC - PC+2o0r3 None 1/2/3
SBIS A b Skip if Bit in /O Register Set If(I1O(A,b)=1) PC -« PC+20r3 None 1/2/3
BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC —PC+k +1 | None 1/2
BRBC s, k Branch if Status Flag Cleared if (SREG(s) =0) then PC - PC+k +1 | None 1/2
BREQ k Branch if Equal ifZ=1)thenPC - PC+k+1 None 1/2
BRNE k Branch if Not Equal ifZ=0)thenPC - PC+k+1 None 1/2
BRCS k Branch if Carry Set ifC=1)thenPC -« PC+k+1 None 1/2
BRCC k Branch if Carry Cleared if C=0)thenPC -« PC+k+1 None 1/2
BRSH k Branch if Same or Higher if C=0)thenPC -« PC+k+1 None 1/2
BRLO k Branch if Lower ifC=1)thenPC -« PC+k+1 None 1/2
BRMI k Branch if Minus if(N=1)thenPC -« PC+k+1 None 1/2
BRPL k Branch if Plus if(N=0)thenPC -« PC+k+1 None 1/2
BRGE k Branch if Greater or Equal, Signed if(NO V=0)thenPC -« PC+k+1 None 1/2
BRLT k Branch if Less Than, Signed if(NOV=1)thenPC -« PC+k+1 None 1/2
BRHS k Branch if Half Carry Flag Set if(H=1)thenPC -« PC+k+1 None 1/2
BRHC k Branch if Half Carry Flag Cleared if H=0)thenPC -« PC+k+1 None 1/2
BRTS k Branch if T Flag Set if T=1)thenPC - PC+k+1 None 1/2
BRTC k Branch if T Flag Cleared if (T=0)thenPC - PC+k+1 None 1/2
BRVS k Branch if Overflow Flag is Set ifV=1)thenPC -« PC+k+1 None 1/2
BRVC k Branch if Overflow Flag is Cleared if V=0)thenPC -« PC+k+1 None 1/2
BRIE k Branch if Interrupt Enabled if (1=1)thenPC « PC+k+1 None 1/2

12 AVR Instruction Set s s—————————————

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

Instruction Set Summary (Continued)

0856D-AVR-08/02

I)

#Clock
Mnemonics | Operands | Description Operation Flags Note
BRID k Branch if Interrupt Disabled if (1=0)thenPC « PC+k+1 None 1/2
Data Transfer Instructions
MOV Rd, Rr Copy Register Rd ~ Rr None 1
MOVW Rd, Rr Copy Register Pair Rd+1:Rd « Rr+1:Rr None 1@
LDI Rd, K Load Immediate Rd « K None 1
LDS Rd, k Load Direct from data space Rd « (k) None 2 W@
LD Rd, X Load Indirect Rd « (X) None 2 2@
LD Rd, X+ Load Indirect and Post-Increment Rd « (X),X « X+1 None 2 @@
LD Rd, -X Load Indirect and Pre-Decrement X < X-1,Rd < (X) None 2 @@
LD Rd, Y Load Indirect Rd < (Y) None 2 2@
LD Rd, Y+ Load Indirect and Post-Increment Rd < (Y),Y «c Y+1 None 2 @@
LD Rd, -Y Load Indirect and Pre-Decrement Y <« Y-1,Rd < (Y) None 2 @@
LDD Rd,Y+q Load Indirect with Displacement Rd « (Y +0Q) None 2 W@
LD Rd, Z Load Indirect Rd « (2) None 2 2@
LD Rd, Z+ Load Indirect and Post-Increment Rd « (2),Z « Z+1 None 2 @@
LD Rd, -Z Load Indirect and Pre-Decrement Z<-Z-1,Rd < (2) None 2 @@
LDD Rd, Z+q Load Indirect with Displacement Rd « (Z+0q) None 2 W@
STS k, Rr Store Direct to data space) - Rd None 2 W@
ST X, Rr Store Indirect (X) < Rr None 2 2@
ST X+, Rr Store Indirect and Post-Increment X) « RLX « X+1 None 2 @@
ST -X, Rr Store Indirect and Pre-Decrement X < X-1,(X) < Rr None 2 @@
ST Y, Rr Store Indirect (Y) « Rr None 2 2@
ST Y+, Rr Store Indirect and Post-Increment (Y) «cRrLY « Y+1 None 2 @@
ST -Y, Rr Store Indirect and Pre-Decrement Y «Y-1,(Y) < Rr None 2 @@
STD Y+q,Rr Store Indirect with Displacement (Y+0q) « Rr None 2 W@
ST Z, Rr Store Indirect (Z) < Rr None 2 2@
ST Z+, Rr Store Indirect and Post-Increment (Z) «Rr,Z -zZ+1 None 2 @@
ST -Z, Rr Store Indirect and Pre-Decrement Z<Z7Z-1,(2) < Rr None 2 @@
STD Z+q,Rr Store Indirect with Displacement (Z+q) - Rr None 2 W@
LPM Load Program Memory RO « (2) None 3@
LPM Rd, Z Load Program Memory Rd « (2) None 3@
LPM Rd, Z+ Load Program Memory and Post- Rd « (2,Z-Z+1 None 3@
Increment
ELPM Extended Load Program Memory RO « (RAMPZ:Z) None 3
ELPM Rd, Z Extended Load Program Memory Rd « (RAMPZ:Z) None 3m
AIMEL 13

ATMEL

Instruction Set Summary (Continued)

#Clock
Mnemonics | Operands | Description Operation Flags Note
ELPM Rd, Z+ Extended Load Program Memory Rd « (RAMPZ:2),Z -« Z+1 None 3®
and Post-Increment
SPM Store Program Memory (2) « R1:RO None -@
IN Rd, A In From 1/O Location Rd ~ I/O(A) None 1
ouT A, Rr Out To I/O Location I/O(A) ~ Rr None 1
PUSH Rr Push Register on Stack STACK — Rr None 2W
POP Rd Pop Register from Stack Rd — STACK None 2W
Bit and Bit-test Instructions
LSL Rd Logical Shift Left Rd(n+1) - Rd(n),Rd(0) -0,C~Rd(7) | Z,C,N,V,H 1
LSR Rd Logical Shift Right Rd(n) - Rd(n+1),Rd(7) - 0,C~Rd(0) | Z,C,N,V 1
ROL Rd Rotate Left Through Carry Rd(0) — C,Rd(n+1) - Rd(n),C~Rd(7) | Z,C,N,V,H 1
ROR Rd Rotate Right Through Carry Rd(7) - C,Rd(n) - Rd(n+1),C~Rd(0) | Z,C,N,V 1
ASR Rd Arithmetic Shift Right Rd(n) « Rd(n+1), n=0..6 Z,C,NV 1
SWAP Rd Swap Nibbles Rd(3..0) ~ Rd(7..4) None 1
BSET S Flag Set SREG(s) ~ 1 SREG(S) 1
BCLR S Flag Clear SREG(s) - 0 SREG(S) 1
SBI A b Set Bit in I/O Register I/O(A,b) « 1 None 2
CBI ADb Clear Bit in /O Register I/O(A, b) - 0 None 2
BST Rr, b Bit Store from Registerto T T < Rr(b) T 1
BLD Rd, b Bit load from T to Register Rd(b) « T None 1
SEC Set Carry C-1 C 1
CLC Clear Carry C-o0 C 1
SEN Set Negative Flag N1 N 1
CLN Clear Negative Flag N -0 N 1
SEZ Set Zero Flag Z -1 z 1
CLz Clear Zero Flag Z -0 V4 1
SEI Global Interrupt Enable I -1 | 1
CLI Global Interrupt Disable 1 -0 | 1
SES Set Signed Test Flag S<1 S 1
CLS Clear Signed Test Flag S0 S 1
SEV Set Two’s Complement Overflow V<l \% 1
CLv Clear Two’s Complement Overflow V-0 \% 1
SET Set T in SREG T<1 T 1
CLT Clear T in SREG T~0 T 1
SEH Set Half Carry Flag in SREG H<1 H 1
CLH Clear Half Carry Flag in SREG H-O0 H 1
14 AVR Instruction Set s s—————————————

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

Instruction Set Summary (Continued)

#Clock
Mnemonics | Operands | Description Operation Flags Note
MCU Control Instructions
BREAK Break (See specific descr. for BREAK) None 1@
NOP No Operation None 1
SLEEP Sleep (see specific descr. for Sleep) None 1
WDR Watchdog Reset (see specific descr. for WDR) None 1
Notes: 1. This instruction is not available in all devices. Refer to the device specific instruction set summary.

N

Not all variants of this instruction are available in all devices. Refer to the device specific instruction set summary.

3. Not all variants of the LPM instruction are available in all devices. Refer to the device specific instruction set summary. The
LPM instruction is not implemented at all in the AT90S1200 device.

4. Cycle times for Data memory accesses assume internal memory accesses, and are not valid for accesses via the external
RAM interface. For LD, ST, LDS, STS, PUSH, POP, add one cycle plus one cycle for each wait state. For CALL, ICALL,
EICALL, RCALL, RET, RETI in devices with 16-bit PC, add three cycles plus two cycles for each wait state. For CALL,
ICALL, EICALL, RCALL, RET, RETI in devices with 22-bit PC, add five cycles plus three cycles for each wait state.

0856D-AVR-08/02

ATMEL

I)

15

ATMEL

ADC - Add with Carry

Description:

Adds two registers and the contents of the C Flag and places the result in the destination register Rd.

Operation:
(i) Rd « Rd+Rr+C

Syntax: Operands: Program Counter:
0] ADC Rd,Rr 0<d<31,0<r<31 PC - PC+1

16-bit Opcode:

| 0001 | 11rd | dddd | reer

Status Register (SREG) Boolean Formula:

H: Rd3+Rr3+Rr3+R3+R3+Rd3
Set if there was a carry from bit 3; cleared otherwise

S: N OV, For signed tests.

V: Rd7¢Rr7¢R7+Rd7¢Rr7¢R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7¢ R6 *R5¢ R4 *R3 +R2 *R1 *RO
Set if the result is $00; cleared otherwise.

C: Rd7+Rr7+Rr7+R7+R7+Rd7
Set if there was carry from the MSB of the result; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
; Add R1: RO to R3: R2
add r2,r0 ; Add | ow byte
adc r3,r1 ; Add with carry high byte

Words: 1 (2 bytes)
Cycles: 1

16 AVR Instruction Set —— s
0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

ADD - Add without Carry

Description:

Adds two registers without the C Flag and places the result in the destination register Rd.

Operation:
(i) Rd — Rd + Rr

Syntax: Operands: Program Counter:
0] ADD Rd,Rr 0<d<31,0<r<31 PC - PC+1

16-bit Opcode:

| 0000 | 11rd | dddd | reer

Status Register (SREG) and Boolean Formula:

| T H S \% N Z Cc

H: Rd3+Rr3+Rr3+R3+R3+Rd3
Set if there was a carry from bit 3; cleared otherwise

S: N OV, For signed tests.

V: Rd7+Rr7+R7+Rd7+Rr7*R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7¢ R6 *R5¢ R4 *R3 +R2 *R1 *RO
Set if the result is $00; cleared otherwise.

C: Rd7 *Rr7 +Rr7 «R7+ R7 «Rd7
Set if there was carry from the MSB of the result; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
add rl,r2 ; Add r2 to rl (rl=rl+r2)
add r28,r28 ; Add r28 to itself (r28=r28+r28)

Words: 1 (2 bytes)
Cycles: 1

ATMEL

0856D-AVR-08/02 I ®

17

ATMEL

ADIW — Add Immediate to Word

Description:

Adds an immediate value (0 - 63) to a register pair and places the result in the register pair. This instruction operates on the
upper four register pairs, and is well suited for operations on the pointer registers.

This instruction is not available in all devices. Refer to the device specific instruction set summary.

Operation:
() Rd+1:Rd « Rd+1:Rd + K

Syntax: Operands: Program Counter:
0] ADIW Rd+1:Rd,K d [O{24,26,28,30}, 0 <K< 63 PC -« PC+1

16-bit Opcode:

| 1001 | 0110 | KKdd | KKKK |

Status Register (SREG) and Boolean Formula:

I T H S \% N z C
- -r-r-r-fr-frr-rft-»71-1]
S: N OV, For signed tests.

V: Rdh7 « R15

Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R15
Set if MSB of the result is set; cleared otherwise.

Z: R15 *R14 *R13 *R12 *R11 *R10 *R9 *R8 *R7+ R6* R5¢* R4* R3+* R2 *R1* RO
Set if the result is $0000; cleared otherwise.

C: R15 ¢ Rdh7
Set if there was carry from the MSB of the result; cleared otherwise.

R (Result) equals Rdh:Rdl after the operation (Rdh7-Rdh0 = R15-R8, RdI7-RdI0=R7-R0).

Example:
adiw r25:24,1 ; Add 1 to r25:r24
adiw ZH: ZL,63 ; Add 63 to the Z-pointer(r31:r30)

Words: 1 (2 bytes)
Cycles: 2

18 AVR Instruction Set —— s
0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

AND - Logical AND

Description:

Performs the logical AND between the contents of register Rd and register Rr and places the result in the destination regis-
ter Rd.

Operation:
(i) Rd — Rd* Rr

Syntax: Operands: Program Counter:
0] AND Rd,Rr 0<d<31,0<r<31 PC - PC+1

16-bit Opcode:

| 0010 | oord | dddd | reer

Status Register (SREG) and Boolean Formula:

[T H S \% N z C
-l -1 -fT-1of]-7]=-1]=]
S: N OV, For signed tests.

V: 0
Cleared
N: R7

Set if MSB of the result is set; cleared otherwise.

Z: R7 *R6 *R5 *R4 «R3¢ R2 *R1 *RO
Set if the result is $00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
and r2,r3 ; Bitwise and r2 and r3, result inr2
I di ri6, 1 ; Set bitnask 0000 0001 in ri16
and r2,r16 ; Isolate bit 0 inr2

Words: 1 (2 bytes)
Cycles: 1

AIMEL 19

0856D-AVR-08/02 I ®

ATMEL

ANDI - Logical AND with Immediate

Description:

Performs the logical AND between the contents of register Rd and a constant and places the result in the destination regis-
ter Rd.

Operation:
0] Rd « Rde« K

Syntax: Operands: Program Counter:
0] ANDI Rd,K 16<d<31,0<K< 255 PC -« PC+1

16-bit Opcode:

| 0111 | KKKK | dddd | KKKK |

Status Register (SREG) and Boolean Formula:

[T H S \% N z C
-l -1 -fT-1of-17]=-1]"=]
S: N OV, For signed tests.

V: 0
Cleared
N: R7

Set if MSB of the result is set; cleared otherwise.

Z: R7 *R6¢ R5°R4 +R3¢ R2¢ R1s RO
Set if the result is $00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
andi r17,$0F ; Clear upper nibble of ri7
andi r18,%$10 ; Isolate bit 4 in ri8

andi r19,3AA ; Clear odd bits of ri19

Words: 1 (2 bytes)
Cycles: 1

20 AVR Instruction Set —— s
0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

ASR — Arithmetic Shift Right

Description:

Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit O is loaded into the C Flag of the SREG. This operation

effectively divides a signed value by two without changing its sign. The Carry Flag can be used to round the result.

Operation:

Syntax: Operands: Program Counter:
0] ASR Rd 0<sd<31 PC - PC+1

16-bit Opcode:

| 1001 | o1o0d | dddd | 0101

Status Register (SREG) and Boolean Formula:

I T H S \% N z C
. -!r-r-r-r-rr-71-79-=
S: N OV, For signed tests.
V: N O C (For N and C after the shift)

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7 *R6 *R5¢ R4 *R3 +R2+ R1+ RO
Set if the result is $00; cleared otherwise.

C: RdO

Set if, before the shift, the LSB of Rd was set; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
| di rl6,$10 ; Load decimal 16 into rl16
asr ri6 ; rlé=r16 / 2
| di rl7,$FC ; Load -4 in r17
asr ri17 ;o rl17=r17/2

Words: 1 (2 bytes)
Cycles: 1

ATMEL

0856D-AVR-08/02 I ©

21

ATMEL

BCLR - Bit Clear in SREG

Description:

Clears a single Flag in SREG.

Operation:
0] SREG(s) -« O

Syntax: Operands: Program Counter:

(i) BCLR s 0<s<7 PC - PC+1

16-bit Opcode:

| 1001 | 0100 | 1sss | 1000

Status Register (SREG) and Boolean Formula:

I: 0 if s = 7; Unchanged otherwise.

T: 0 if s = 6; Unchanged otherwise.
H: 0 if s = 5; Unchanged otherwise.
S: 0 if s = 4; Unchanged otherwise.
V: 0 if s = 3; Unchanged otherwise.
N: 0 if s = 2; Unchanged otherwise.
Z: 0 if s = 1; Unchanged otherwise.
C: 0 if s = 0; Unchanged otherwise.
Example:

belr 0 ; Clear Carry Flag

belr 7 ; Disable interrupts

Words: 1 (2 bytes)
Cycles: 1

22 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

BLD — Bit Load from the T Flag in SREG to a Bit in Register

Description:

Copies the T Flag in the SREG (Status Register) to bit b in register Rd.

Operation:
0] Rd(b) « T

Syntax: Operands: Program Counter:
0] BLD Rd,b 0<d<31,0<b<s7 PC -« PC+1

16 bit Opcode:

| 1111 | 100d | dddd | Obbb |

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
-r-r-r-r-1r-7r-71=-1]
Example:

; Copy bit

bst ri, 2 ; Store bit 2 of r1in T Flag

bld r0,4 ; Load T Flag into bit 4 of rO

Words: 1 (2 bytes)
Cycles: 1

AIMEL 23

0856D-AVR-08/02 I ®

ATMEL

BRBC — Branch if Bit in SREG is Cleared

Description:

Conditional relative branch. Tests a single bit in SREG and branches relatively to PC if the bit is cleared. This instruction
branches relatively to PC in either direction (PC - 63 < destination < PC + 64). The parameter k is the offset from PC and is
represented in two’s complement form.

Operation:
() If SREG(s) =0thenPC -« PC+k+1,elsePC - PC+1

Syntax: Operands: Program Counter:
0] BRBC s,k 0<s<7,-64<k<+63 PC -« PC+k+1

PC —~ PC + 1, if condition is false

16-bit Opcode:

| 1111 | 01kk | kkkk | ksss

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:

cpi r20,5 ; Conmpare r20 to the value 5

brbc 1,noteq ; Branch if Zero Flag cleared

not eq: nop ; Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false
2 if condition is true

24 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

BRBS — Branch if Bit in SREG is Set

Description:

Conditional relative branch. Tests a single bit in SREG and branches relatively to PC if the bit is set. This instruction
branches relatively to PC in either direction (PC - 63 < destination < PC + 64). The parameter k is the offset from PC and is
represented in two’s complement form.

Operation:
() If SREG(s) =1thenPC -« PC+k+1,elsePC - PC+1

Syntax: Operands: Program Counter:
0] BRBS s,k 0<s<7,-64<k<+63 PC -« PC+k+1

PC —~ PC + 1, if condition is false

16-bit Opcode:

| 1111 | 00kk | kkkk | ksss |

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
bst ro, 3 ; Load T bit with bit 3 of r0
brbs 6,bitset ; Branch T bit was set
bi tset: nop ; Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false
2 if condition is true

AIMEL 25

0856D-AVR-08/02 I ©

ATMEL

BRCC - Branch if Carry Cleared

Description:

Conditional relative branch. Tests the Carry Flag (C) and branches relatively to PC if C is cleared. This instruction branches
relatively to PC in either direction (PC - 63 < destination < PC + 64). The parameter k is the offset from PC and is repre-
sented in two’s complement form. (Equivalent to instruction BRBC 0,k).

Operation:
() fC=0thenPC - PC+k+1,elsePC - PC+1

Syntax: Operands: Program Counter:
0] BRCC k -64 <k <+63 PC -« PC+k+1

PC —~ PC + 1, if condition is false

16-bit Opcode:

| 1111 | 01kk | kkkk | k000

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
add r22,r23 ; Add r23 to r22
brcc nocarry ; Branch if carry cleared
nocarry: nop ; Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false
2 if condition is true

26 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

BRCS — Branch if Carry Set

Description:

Conditional relative branch. Tests the Carry Flag (C) and branches relatively to PC if C is set. This instruction branches rel-
atively to PC in either direction (PC - 63 < destination < PC + 64). The parameter k is the offset from PC and is represented

in two’s complement form. (Equivalent to instruction BRBS 0,k).

Operation:

() fC=1thenPC - PC+k+1,elsePC - PC+1
Syntax: Operands:

() BRCS k -64 < k < +63
16-bit Opcode:

| 1111 | 00Kk | kkkk | kooo |

Status Register (SREG) and Boolean Formula:

Program Counter:

PC - PC+k+1
PC — PC + 1, if condition is false

Example:
cpi r26, $56
brcs carry

Conpare r26 with $56
Branch if carry set

carry: nop
Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

0856D-AVR-08/02

Branch destination (do not hing)

AIMEL 27

I)

ATMEL

BREAK — Break

Description:

The BREAK instruction is used by the On-chip Debug system, and is normally not used in the application software. When
the BREAK instruction is executed, the AVR CPU is set in the Stopped Mode. This gives the On-chip Debugger access to
internal resources.

If any Lock bits are set, or either the JTAGEN or OCDEN Fuses are unprogrammed, the CPU will treat the BREAK instruc-
tion as a NOP and will not enter the Stopped mode.

This instruction is not available in all devices. Refer to the device specific instruction set summary.

Operation:
0] On-chip Debug system break.

Syntax: Operands: Program Counter:
0] BREAK None PC - PC+1

16-bit Opcode:

| 1001 | 0101 | 1001 | 1000 |

Status Register (SREG) and Boolean Formula:

Words: 1 (2 bytes)
Cycles: 1

28 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

BREQ — Branch if Equal

Description:

Conditional relative branch. Tests the Zero Flag (Z) and branches relatively to PC if Z is set. If the instruction is executed
immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the unsigned or signed
binary number represented in Rd was equal to the unsigned or signed binary number represented in Rr. This instruction
branches relatively to PC in either direction (PC - 63 < destination < PC + 64). The parameter k is the offset from PC and is
represented in two’s complement form. (Equivalent to instruction BRBS 1,k).

Operation:
0] fRd=Rr(Z=1)thenPC -« PC+k+1,else PC -« PC+1

Syntax: Operands: Program Counter:
0] BREQ k -64 <k<+63 PC -« PC+k+1

PC —~ PC + 1, if condition is false

16-bit Opcode:

| 1111 | 00kk | kkkk | k001

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
cp rl, r0 ; Conpare registers rl and r0
breq equal ; Branch if registers equal
equal : nop ; Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false
2 if condition is true

AIMEL 29

0856D-AVR-08/02 I ©

ATMEL

BRGE — Branch if Greater or Equal (Signed)

Description:

Conditional relative branch. Tests the Signed Flag (S) and branches relatively to PC if S is cleared. If the instruction is exe-
cuted immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the signed binary
number represented in Rd was greater than or equal to the signed binary number represented in Rr. This instruction
branches relatively to PC in either direction (PC - 63 < destination < PC + 64). The parameter k is the offset from PC and is
represented in two’s complement form. (Equivalent to instruction BRBC 4,k).

Operation:
0] fRAd=ZRr(NOV =0)thenPC -« PC+k+1,else PC - PC+1

Syntax: Operands: Program Counter:
0] BRGE k -64 <k <+63 PC -« PC+k+1

PC —~ PC + 1, if condition is false

16-bit Opcode:

| 1111 | 01kk | kkkk | k100 |

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
cp rii, r12 ; Conpare registers rll and r12
brge greateq ; Branch if r1l = r12 (signed)
greateq: nop ; Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false
2 if condition is true

30 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

BRHC — Branch if Half Carry Flag is Cleared

Description:

Conditional relative branch. Tests the Half Carry Flag (H) and branches relatively to PC if H is cleared. This instruction
branches relatively to PC in either direction (PC - 63 < destination < PC + 64). The parameter k is the offset from PC and is
represented in two’s complement form. (Equivalent to instruction BRBC 5,k).

Operation:
() fH=0thenPC - PC+k+1,elsePC - PC+1

Syntax: Operands: Program Counter:
0] BRHC k -64 <k <+63 PC -« PC+k+1

PC —~ PC + 1, if condition is false

16-bit Opcode:

| 1111 | 01kk | kkkk | k101 |

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
brhc hcl ear ; Branch if Half Carry Flag cleared
hcl ear: nop ; Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false
2 if condition is true

AIMEL 3

0856D-AVR-08/02 I ©

ATMEL

BRHS — Branch if Half Carry Flag is Set

Description:

Conditional relative branch. Tests the Half Carry Flag (H) and branches relatively to PC if H is set. This instruction branches
relatively to PC in either direction (PC - 63 < destination < PC + 64). The parameter k is the offset from PC and is repre-
sented in two’s complement form. (Equivalent to instruction BRBS 5,k).

Operation:
() fH=1thenPC - PC+k+1,elsePC - PC+1

Syntax: Operands: Program Counter:
0] BRHS k -64 <k <+63 PC -« PC+k+1

PC — PC + 1, if condition is false
16-bit Opcode:

| 1111 | 00kk | kkkk | k101

Status Register (SREG) and Boolean Formula:

[T H s % N z C
-l -t -7 -71-1-1=-1~=]
Example:

brhs hset ; Branch if Half Carry Flag set
hset : .nop ; Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false
2 if condition is true

32 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

BRID — Branch if Global Interrupt is Disabled

Description:

Conditional relative branch. Tests the Global Interrupt Flag (I) and branches relatively to PC if | is cleared. This instruction
branches relatively to PC in either direction (PC - 63 < destination < PC + 64). The parameter k is the offset from PC and is
represented in two’s complement form. (Equivalent to instruction BRBC 7,k).

Operation:
0] Ifl=0thenPC -« PC+k+1,else PC - PC+1

Syntax: Operands: Program Counter:
0] BRID k -64 <k<+63 PC -« PC+k+1

PC —~ PC + 1, if condition is false

16-bit Opcode:

| 1111 | 01kk | kkkk | k111

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
brid intdis ; Branch if interrupt disabled
intdis: nop ; Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false
2 if condition is true

AIMEL 33

0856D-AVR-08/02 I ©

ATMEL

BRIE — Branch if Global Interrupt is Enabled

Description:

Conditional relative branch. Tests the Global Interrupt Flag (I) and branches relatively to PC if | is set. This instruction
branches relatively to PC in either direction (PC - 63 < destination < PC + 64). The parameter k is the offset from PC and is
represented in two’s complement form. (Equivalent to instruction BRBS 7,k).

Operation:
0] Ifl=1thenPC « PC+k+1,else PC - PC+1

Syntax: Operands: Program Counter:
0] BRIE k -64 <k<+63 PC -« PC+k+1

PC —~ PC + 1, if condition is false

16-bit Opcode:

| 1111 | 00kk | kkkk | k111 |

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
brie inten ; Branch if interrupt enabled
inten: nop ; Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false
2 if condition is true

34 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

BRLO — Branch if Lower (Unsigned)

Description:

Conditional relative branch. Tests the Carry Flag (C) and branches relatively to PC if C is set. If the instruction is executed
immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the unsigned binary
number represented in Rd was smaller than the unsigned binary number represented in Rr. This instruction branches rela-
tively to PC in either direction (PC - 63 < destination < PC + 64). The parameter k is the offset from PC and is represented
in two’s complement form. (Equivalent to instruction BRBS 0,k).

Operation:
() IfRd<Rr(C=1)thenPC - PC+k+1,else PC -« PC+1

Syntax: Operands: Program Counter:
0] BRLO k -64 <k <+63 PC -« PC+k+1

PC —~ PC + 1, if condition is false

16-bit Opcode:

| 1111 | 00kk | kkkk | k000 |

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
eor r19,r19 ; Clear ri19
| oop: inc rl19 ; Increase r19
cpi r19, $10 ; Conpare r19 with $10
brlo I oop ; Branch if r19 < $10 (unsigned)
nop ; Exit fromloop (do not hing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false
2 if condition is true

AIMEL 3

0856D—-AVR—-08/02 I

ATMEL

BRLT — Branch if Less Than (Signed)

Description:

Conditional relative branch. Tests the Signed Flag (S) and branches relatively to PC if S is set. If the instruction is executed
immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the signed binary num-
ber represented in Rd was less than the signed binary number represented in Rr. This instruction branches relatively to PC
in either direction (PC - 63 < destination < PC + 64). The parameter k is the offset from PC and is represented in two’'s com-
plement form. (Equivalent to instruction BRBS 4 k).

Operation:
0] fRA<Rr(NOV=1)thenPC -« PC+k+1,else PC -« PC+1

Syntax: Operands: Program Counter:
0] BRLT k -64 < k< +63 PC -« PC+k+1

16-bit Opcode:

PC —~ PC + 1, if condition is false

\ 1111 \ 00kk \ kkkk k100

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
cp ri6, rl ; Conmpare rl16 to rl
brit less Branch if r16 < rl (signed)
| ess: nop Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false
2 if condition is true

36 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

BRMI — Branch if Minus

Description:

Conditional relative branch. Tests the Negative Flag (N) and branches relatively to PC if N is set. This instruction branches
relatively to PC in either direction (PC - 63 < destination < PC + 64). The parameter k is the offset from PC and is repre-
sented in two’s complement form. (Equivalent to instruction BRBS 2 k).

Operation:
() fN=1thenPC - PC+k+1,elsePC - PC+1

Syntax: Operands: Program Counter:
0] BRMI k -64 <k<+63 PC -« PC+k+1

PC —~ PC + 1, if condition is false

16-bit Opcode:

| 1111 | 00kk | kkkk | k010 |

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
subi r1s, 4 ; Subtract 4 fromr18
brm negative ; Branch if result negative
negative: nop ; Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false
2 if condition is true

AIMEL 3

0856D—-AVR—-08/02 I

ATMEL

BRNE — Branch if Not Equal

Description:

Conditional relative branch. Tests the Zero Flag (Z) and branches relatively to PC if Z is cleared. If the instruction is exe-
cuted immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the unsigned or
signed binary number represented in Rd was not equal to the unsigned or signed binary number represented in Rr. This
instruction branches relatively to PC in either direction (PC - 63 < destination < PC + 64). The parameter k is the offset from
PC and is represented in two’s complement form. (Equivalent to instruction BRBC 1,k).

Operation:
() IfRd#Rr(Z=0)thenPC -« PC+k+1,elsePC - PC+1

Syntax: Operands: Program Counter:
0] BRNE k -64 <k<+63 PC -« PC+k+1

PC —~ PC + 1, if condition is false

16-bit Opcode:

| 1111 | 01kk | kkkk | k001

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
eor r27,r27 ; Cear r27
| oop: inc r27 ; Increase r27
cpi r27,5 ; Conpare r27 to 5
brne | oop ; Branch if r27<>5
nop ; Loop exit (do not hing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false
2 if condition is true

38 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

BRPL — Branch if Plus

Description:

Conditional relative branch. Tests the Negative Flag (N) and branches relatively to PC if N is cleared. This instruction
branches relatively to PC in either direction (PC - 63 < destination < PC + 64). The parameter k is the offset from PC and is
represented in two’s complement form. (Equivalent to instruction BRBC 2,k).

Operation:
() fN=0thenPC - PC+k+1,elsePC - PC+1

Syntax: Operands: Program Counter:
0] BRPL k -64 <k<+63 PC -« PC+k+1

PC —~ PC + 1, if condition is false

16-bit Opcode:

| 1111 | 01kk | kkkk | k010 |

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
subi r26, $50 ; Subtract $50 fromr26
brpl positive ; Branch if r26 positive
positive: nop ; Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false
2 if condition is true

AIMEL 39

0856D-AVR-08/02 I ®

ATMEL

BRSH — Branch if Same or Higher (Unsigned)

Description:

Conditional relative branch. Tests the Carry Flag (C) and branches relatively to PC if C is cleared. If the instruction is exe-
cuted immediately after execution of any of the instructions CP, CPI, SUB or SUBI the branch will occur if and only if the
unsigned binary number represented in Rd was greater than or equal to the unsigned binary number represented in Rr.
This instruction branches relatively to PC in either direction (PC - 63 < destination < PC + 64). The parameter k is the offset
from PC and is represented in two’s complement form. (Equivalent to instruction BRBC 0,k).

Operation:
0] If Rd>Rr (C=0)thenPC -« PC+k+1,else PC -« PC+1

Syntax: Operands: Program Counter:
0] BRSH k -64 <k <+63 PC -« PC+k+1

PC —~ PC + 1, if condition is false

16-bit Opcode:
| 1111 | 01kk | kkkk | k000 |

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
subi r19,4 ; Subtract 4 fromr19
brsh highsm ; Branch if r19 >= 4 (unsigned)
hi ghsm nop ; Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false
2 if condition is true

40 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

BRTC — Branch if the T Flag is Cleared

Description:

Conditional relative branch. Tests the T Flag and branches relatively to PC if T is cleared. This instruction branches rela-
tively to PC in either direction (PC - 63 < destination < PC + 64). The parameter k is the offset from PC and is represented
in two's complement form. (Equivalent to instruction BRBC 6,k).

Operation:
0] fT=0thenPC -« PC+k+1,elsePC - PC+1

Syntax: Operands: Program Counter:
0] BRTC k -64 <k <+63 PC -« PC+k+1

PC —~ PC + 1, if condition is false

16-bit Opcode:

| 1111 | 01kk | kkkk | k110 |

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
bst r3,5 ; Store bit 5 of r3in T Flag
brtc tclear ; Branch if this bit was cleared
tclear: nop ; Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false
2 if condition is true

AIMEL “

0856D-AVR-08/02 I ©

ATMEL

BRTS — Branch if the T Flag is Set

Description:

Conditional relative branch. Tests the T Flag and branches relatively to PC if T is set. This instruction branches relatively to
PC in either direction (PC - 63 < destination < PC + 64). The parameter k is the offset from PC and is represented in two’s
complement form. (Equivalent to instruction BRBS 6,k).

Operation:
() fT=1thenPC -« PC+k+1,elsePC - PC+1

Syntax: Operands: Program Counter:
0] BRTS k -64 <k <+63 PC -« PC+k+1

PC —~ PC + 1, if condition is false

16-bit Opcode:

| 1111 | 00kk | kkkk | k110 |

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
bst r3,5 ; Store bit 5of r3in T Flag
brts tset ; Branch if this bit was set
tset: nop ; Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false
2 if condition is true

42 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

BRVC — Branch if Overflow Cleared

Description:

Conditional relative branch. Tests the Overflow Flag (V) and branches relatively to PC if V is cleared. This instruction branch-
es relatively to PC in either direction (PC - 63 < destination <PC + 64). The parameter k is the offset from PC and is repre-
sented in two’s complement form. (Equivalent to instruction BRBC 3 k).

Operation:
0] IfV=0thenPC -« PC+k+1,elsePC - PC+1

Syntax: Operands: Program Counter:
0] BRVC k -64 <k <+63 PC -« PC+k+1

PC —~ PC + 1, if condition is false

16-bit Opcode:

| 1111 | 01kk | kkkk | k011 |

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
add r3,r4 ; Add r4 to r3
brvc noover ; Branch if no overflow
noover: nop ; Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false
2 if condition is true

AIMEL 43

0856D-AVR-08/02 I ©

ATMEL

BRVS — Branch if Overflow Set

Description:

Conditional relative branch. Tests the Overflow Flag (V) and branches relatively to PC if V is set. This instruction branches
relatively to PC in either direction (PC - 63 < destination < PC + 64). The parameter k is the offset from PC and is repre-
sented in two’s complement form. (Equivalent to instruction BRBS 3,k).

Operation:
() IfV=1thenPC -« PC+k+1,elsePC - PC+1

Syntax: Operands: Program Counter:
0] BRVS k -64 <k <+63 PC -« PC+k+1

PC —~ PC + 1, if condition is false

16-bit Opcode:

| 1111 | 00kk | kkkk | k011 |

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
add r3,r4 ; Add r4 to r3
brvs overfl ; Branch if overflow
overfl: nop ; Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false
2 if condition is true

44 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

BSET - Bit Set in SREG

Description:

Sets a single Flag or bit in SREG.

Operation:
(i) SREG(s) « 1

Syntax: Operands: Program Counter:
0] BSET s O0<s<7 PC - PC+1

16-bit Opcode:

| 1001 | 0100 | Osss | 1000 |

Status Register (SREG) and Boolean Formula:

I: 1if s = 7; Unchanged otherwise.

T: 1if s = 6; Unchanged otherwise.
H: 1if s = 5; Unchanged otherwise.
S: 1if s = 4; Unchanged otherwise.
V: 1if s = 3; Unchanged otherwise.
N: 1if s = 2; Unchanged otherwise.
Z: 1if s = 1; Unchanged otherwise.
C: 1if s = 0; Unchanged otherwise.
Example:
bset 6 ; Set T Flag
bset 7 ; Enabl e interrupt

Words: 1 (2 bytes)
Cycles: 1

ATMEL

0856D—-AVR—-08/02 I ®

45

ATMEL

BST — Bit Store from Bit in Register to T Flag in SREG

Description:
Stores bit b from Rd to the T Flag in SREG (Status Register).

Operation:
0] T « Rd(b)

Syntax: Operands: Program Counter:
0] BST Rd,b 0<d<31,0<b<s7 PC - PC+1

16-bit Opcode:
1111 | 101d | dddd | Obbb |

Status Register (SREG) and Boolean Formula:

| T H S \% N VA C
T: 0 if bit b in Rd is cleared. Set to 1 otherwise.
Example:
; Copy bit
bst rl, 2 ; Store bit 2 of r1in T Flag
bl d r0, 4 ; Load T into bit 4 of r0

Words: 1 (2 bytes)
Cycles: 1

46 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

CALL - Long Call to a Subroutine

Description:

Calls to a subroutine within the entire Program memory. The return address (to the instruction after the CALL) will be stored
onto the Stack. (See also RCALL). The Stack Pointer uses a post-decrement scheme during CALL.

This instruction is not available in all devices. Refer to the device specific instruction set summary.

Operation:
0] PC « k Devices with 16 bits PC, 128K bytes Program memory maximum.
(i) PC « k Devices with 22 bits PC, 8M bytes Program memory maximum.
Syntax: Operands: Program Counter Stack:
(i) CALL k 0 <k <64K PC < k STACK — PC+2
SP « SP-2, (2 bytes, 16 bits)
(i) CALL k 0<k<4M PC « k STACK ~ PC+2

SP « SP-3 (3 bytes, 22 bits)

32-bit Opcode:

1001 010k kkkk 111k
kkkk kkkk kkkk kkkk

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
nmov r16,ro0 ; Copy rO to ri6
cal | check ; Call subroutine
nop ; Continue (do not hing)
check: cpi rl6, $42 ; Check if r16 has a special value
breq error ; Branch if equal
ret ; Return from subroutine
error: rjnp error ; Infinite | oop

Words: 2 (4 bytes)
Cycles: 4, devices with 16 bit PC
5, devices with 22 bit PC

AIMEL 47

0856D-AVR-08/02 I ©

ATMEL

CBI — Clear Bit in I/O Register

Description:

Clears a specified bit in an /O Register. This instruction operates on the lower 32 I/O Registers — addresses 0-31.

Operation:
(i) I/O(A,b) — 0

Syntax: Operands: Program Counter:
0] CBIADb 0<A<31,0<b<s7 PC - PC+1

16-bit Opcode:

| 1001 | 1000 | AAAA | Abbb |

Status Register (SREG) and Boolean Formula:

Example:
chi $12,7 ; Clear bit 7 in Port D

Words: 1 (2 bytes)
Cycles: 2

48 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

CBR — Clear Bits in Register

Description:

Clears the specified bits in register Rd. Performs the logical AND between the contents of register Rd and the complement
of the constant mask K. The result will be placed in register Rd.

Operation:
(i) Rd — Rd e« ($FF - K)

Syntax: Operands: Program Counter:
0] CBR Rd,K 16<d<31,0<K< 255 PC -« PC+1

16-bit Opcode: (see ANDI with K complemented)

Status Register (SREG) and Boolean Formula:

I T H S \% N z C
— — — =S O =S = —_
S: N OV, For signed tests.
V: 0
Cleared
N: R7

Set if MSB of the result is set; cleared otherwise.

Z: R7 *R6 *R5¢ R4 R3 +R2+ R1+ RO
Set if the result is $00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
cbr rl6,$F0 ; C ear upper nibble of r16
cbr ris, 1 ; Clear bit 0in ri8

Words: 1 (2 bytes)
Cycles: 1

AIMEL 4

0856D-AVR-08/02 I ®

CLC — Clear Carry Flag

ATMEL

Description:

Clears the Carry Flag (C) in SREG (Status Register).

Operation:
() C-0
Syntax: Operands:
() CLC None
16-bit Opcode:
| 1001 | 0100 | 1000 | 1000 |

Status Register (SREG) and Boolean Formula:

T

H

S

\%

Program Counter:

PC - PC+1

0

Carry Flag cleared

Example:

add
clc

ro,r0

Words: 1 (2 bytes)
Cycles: 1

50

; Add r0 to itself
; Clear Carry Flag

AVR Instruction Set e ———

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

CLH — Clear Half Carry Flag

Description:
Clears the Half Carry Flag (H) in SREG (Status Register).

Operation:
(i) H<o0

Syntax: Operands: Program Counter:
0] CLH None PC - PC+1

16-bit Opcode:

| 1001 | 0100 | 1101 | 1000 |

Status Register (SREG) and Boolean Formula:

| T H S \% N Z

— — 0 — — — —

H: 0
Half Carry Flag cleared

Example:
clh ; Clear the Half Carry Flag

Words: 1 (2 bytes)
Cycles: 1

ATMEL

0856D-AVR-08/02 I ®

51

ATMEL

CLI - Clear Global Interrupt Flag

Description:

Clears the Global Interrupt Flag (1) in SREG (Status Register). The interrupts will be immediately disabled. No interrupt will
be executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction.

Operation:
(i) | <0

Syntax: Operands: Program Counter:
() CLI None PC -« PC+1

16-bit Opcode:

| 1001 | 0100 | 1111 | 1000 |

Status Register (SREG) and Boolean Formula:

| T H S \% N 4 C
0 - - - - - - -
I: 0
Global Interrupt Flag cleared
Example:
in tenp, SREG ; Store SREG val ue (tenp nust be defined by user)
cli ; Disable interrupts during tinmed sequence
sbi EECR, EEMAE; Start EEPROM wite
sbi EECR, EEVE
out SREG tenp ; Restore SREG value (I-Flag)

Words: 1 (2 bytes)
Cycles: 1

52 AVR Instruction Set —— s
0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

CLN — Clear Negative Flag

Description:

Clears the Negative Flag (N) in SREG (Status Register).

Operation:
(i) N <O

Syntax: Operands: Program Counter:
() CLN None PC -« PC+1

16-bit Opcode:

| 1001 | 0100 | 1010 | 1000 |

Status Register (SREG) and Boolean Formula:

| T H S \% N Z

— — — — — 0 —

N: 0
Negative Flag cleared

Example:
add r2,r3 ; Add r3 tor2
cln ; Clear Negative Flag

Words: 1 (2 bytes)
Cycles: 1

ATMEL

0856D-AVR-08/02 I ®

53

ATMEL

CLR — Clear Register

Description:

Clears a register. This instruction performs an Exclusive OR between a register and itself. This will clear all bits in the
register.

Operation:
(i) Rd « Rd O Rd

Syntax: Operands: Program Counter:
0] CLR Rd 0<sd<31 PC -« PC+1

16-bit Opcode: (see EOR Rd,Rd)

| 0010 | 01dd | dddd | dddd |

Status Register (SREG) and Boolean Formula:

| T H S Y, N z C
- - - 0 0 0 1 -
S: 0
Cleared
V: 0
Cleared
N: 0
Cleared
Z: 1
Set

R (Result) equals Rd after the operation.

Example:
clr ril8 ; clear ri8
| oop: inc rl8 ; increase ri8

cpi r18,$50 ; Conpare ri18 to $50
brne | oop

Words: 1 (2 bytes)
Cycles: 1

54 AVR Instruction Set —— s
0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

CLS — Clear Signed Flag

Description:
Clears the Signed Flag (S) in SREG (Status Register).

Operation:
(i) S0

Syntax: Operands: Program Counter:
0] CLS None PC - PC+1

16-bit Opcode:

| 1001 | 0100 | 1100 | 1000 |

Status Register (SREG) and Boolean Formula:

| T H S \Y, N z
- - - 0 - - -
S: 0
Signed Flag cleared
Example:
add r2,r3 ; Add r3 to r2
cls ; Clear Signed Flag

Words: 1 (2 bytes)
Cycles: 1

ATMEL

0856D-AVR-08/02 I ®

55

CLT —Clear T Flag

ATMEL

Description:

Clears the T Flag in SREG (Status Register).

(i)

(i)

Operation:
T~O0

Syntax:
CLT

16-bit Opcode:

Operands:
None

1001

0100 | 1110 |

1000 |

Status Register (SREG) and Boolean Formula:

T

H

S

\%

Program Counter:
PC - PC+1

0

0

T Flag cleared

Example:

clt

Words: 1 (2 bytes)
Cycles: 1

56

; Clear T Flag

AVR Instruction Set e ———

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

CLV - Clear Overflow Flag

Description:
Clears the Overflow Flag (V) in SREG (Status Register).

Operation:
(i) V<0

Syntax: Operands: Program Counter:
() CLv None PC -« PC+1

16-bit Opcode:

| 1001 | 0100 | 1011 | 1000 |

Status Register (SREG) and Boolean Formula:

| T H S \% N Z

— — — — 0 — —

V: 0
Overflow Flag cleared

Example:
add r2,r3 ; Add r3 to r2
clv ; Clear Overflow Flag

Words: 1 (2 bytes)
Cycles: 1

ATMEL

0856D-AVR-08/02 I ®

57

CLZ - Clear Zero Flag

ATMEL

Description:
Clears the Zero Flag (2) in SREG (Status Register).

Operation:
0] Z -0
Syntax: Operands: Program Counter:
() CLz None PC -« PC+1
16-bit Opcode:
| 1001 | 0100 | 1001 | 1000 |
Status Register (SREG) and Boolean Formula:
| T H S V N VA C
- - - - - - 0 -
Z: 0
Zero Flag cleared
Example:
add r2,r3 ; Add r3 tor2
clz ; Clear zero

Words: 1 (2 bytes)
Cycles: 1

58

AVR Instruction Set e ———

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

COM - One’s Complement

Description:

This instruction performs a One’s Complement of register Rd.

Operation:
(i) Rd « $FF - Rd

Syntax: Operands: Program Counter:
0] COM Rd 0<sd<31 PC -« PC+1

16-bit Opcode:

| 1001 | 010d | dddd | 0000 |

Status Register (SREG) and Boolean Formula:

| T H S \% N Z

— — — < 0 < =

S: NOV
For signed tests.

V: 0
Cleared.
N: R7

Set if MSB of the result is set; cleared otherwise.

Z: R7 *R6¢ R5¢ R4 «R3 *+R2+ R1 *RO
Set if the result is $00; Cleared otherwise.

C: 1
Set.

R (Result) equals Rd after the operation.

Example:
com r4 ; Take one’s conpl enent of r4
breq zero ; Branch if zero
zero: nop ; Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1

ATMEL

0856D-AVR-08/02 I ®

59

ATMEL

CP — Compare

Description:

This instruction performs a compare between two registers Rd and Rr. None of the registers are changed. All conditional
branches can be used after this instruction.

Operation:
(i) Rd - Rr

Syntax: Operands: Program Counter:
0] CP Rd,Rr 0<d<31,0<r<31 PC -« PC+1

16-bit Opcode:

| 0001 | 0lrd | dddd | reer |

Status Register (SREG) and Boolean Formula:

| T H S \% N Z Cc

=S < < < =S <

H: Rd3 *Rr3+ Rr3 «R3 +R3¢ Rd3
Set if there was a borrow from bit 3; cleared otherwise

S: N OV, For signed tests.

V: Rd7¢ Rr7 *R7+ Rd7 *Rr7 *R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7¢ R6 *R5¢ R4 *R3 *+R2 *R1 *RO
Set if the result is $00; cleared otherwise.

C: Rd7 ¢Rr7+ Rr7¢ R7 +R7+ Rd7
Set if the absolute value of the contents of Rr is larger than the absolute value of Rd; cleared otherwise.

R (Result) after the operation.

Example:
cp r4,r19 ; Conpare r4 with r19
brne noteq ; Branch if r4 <> r19
noteq: nop ; Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1

60 AVR Instruction Set —— s
0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

CPC — Compare with Carry

Description:

This instruction performs a compare between two registers Rd and Rr and also takes into account the previous carry. None
of the registers are changed. All conditional branches can be used after this instruction.

Operation:
0] Rd-Rr-C

Syntax: Operands:

Program Counter:

(i) CPC Rd,Rr 0<d<31,0<r<31 PC -« PC+1
16-bit Opcode:
| 0000 | oird | dddd | reer |
Status Register (SREG) and Boolean Formula:
I T H S \% N z C
H: Rd3 ¢Rr3+ Rr3 *R3 +R3 *Rd3

Set if there was a borrow from bit 3; cleared otherwise
S: N OV, For signed tests.

V: Rd7 *Rr7* R7+ Rd7+ Rr7 «R7

Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7 *R6* R5* R4 *R3 *R2 *R1+ RO *Z

Previous value remains unchanged when the result is zero; cleared otherwise.

C: Rd7 ¢Rr7+ Rr7¢ R7 +R7 *Rd7

Set if the absolute value of the contents of Rr plus previous carry is larger than the absolute value of Rd; cleared

otherwise.

R (Result) after the operation.
Example:
Conmpare r3:r2 with r1:r0

cp r2,r0 Conpare | ow byte
cpc r3,rl Conpare high byte
brne not eq Branch if not equal

noteq: nop

0856D-AVR-08/02

ATMEL

Branch destination (do not hing)

61

®

ATMEL

Words: 1 (2 bytes)
Cycles: 1

62 AVR Instruction Set —— s
0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

CPl — Compare with Immediate

Description:

This instruction performs a compare between register Rd and a constant. The register is not changed. All conditional
branches can be used after this instruction.

Operation:
(i) Rd - K

Syntax: Operands: Program Counter:
0] CPI Rd,K 16 <d<31,0sK<255 PC -« PC+1

16-bit Opcode:

| 0011 | KKKK | dddd | KKKK |

Status Register (SREG) and Boolean Formula:

| T H S \% N Z Cc

=S < < < =S <

H: Rd3 «K3+ K3+ R3+ R3 *Rd3
Set if there was a borrow from bit 3; cleared otherwise

S: N OV, For signed tests.

V: Rd7 «K7 «R7 +Rd7 *K7 *R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7 *R6¢ R5 *R4+ R3¢ R2 *R1 *RO
Set if the result is $00; cleared otherwise.

C: Rd7 «K7 +K7 «R7+ R7 *Rd7
Set if the absolute value of K is larger than the absolute value of Rd; cleared otherwise.

R (Result) after the operation.

Example:
cpi r19, 3 ; Conpare r19 with 3
br ne error ; Branch if r19<>3
error: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)
Cycles: 1

AIMEL 63

0856D-AVR-08/02 I ®

ATMEL

CPSE — Compare Skip if Equal

Description:

This instruction performs a compare between two registers Rd and Rr, and skips the next instruction if Rd = Rr.

Operation:

() If Rd =RrthenPC - PC+2 (or3)else PC - PC+1
Syntax: Operands:

0] CPSE Rd,Rr 0<d<31,0=<r<31

16-bit Opcode:

| 0001 | oord | dddd | reer |

Status Register (SREG) and Boolean Formula:

Program Counter:

PC —~ PC + 1, Condition false - no skip
PC ~ PC + 2, Skip a one word instruction
PC ~ PC + 3, Skip a two word instruction

| T H S \% N Zz C
Example:
inc r4 ; Increase r4
cpse rd,r0 ; Conmpare r4 to r0
neg r4 ; Only executed if r4<>r0
nop ; Continue (do not hing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false (no skip)

2 if condition is true (skip is executed) and the instruction skipped is 1 word
3 if condition is true (skip is executed) and the instruction skipped is 2 words

64 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

DEC — Decrement

Description:

Subtracts one -1- from the contents of register Rd and places the result in the destination register Rd.

The C Flag in SREG is not affected by the operation, thus allowing the DEC instruction to be used on a loop counter in mul-

tiple-precision computations.

When operating on unsigned values, only BREQ and BRNE branches can be expected to perform consistently. When
operating on two’s complement values, all signed branches are available.

Operation:
() Rd « Rd-1
Syntax: Operands: Program Counter:
(i) DEC Rd 0<d<31 PC -« PC+1
16-bit Opcode:
| 1001 | 010d | dddd | 1010
Status Register and Boolean Formula:
I T H S \% N z C
S: NOV
For signed tests.
V: R7 *R6 *R5 *R4¢ R3¢ R2 *R1+ RO
Setif two’s complement overflow resulted from the operation; cleared otherwise. Two’s complement overflow occurs
if and only if Rd was $80 before the operation.
N: R7
Set if MSB of the result is set; cleared otherwise.
Z R7 *R6¢ R5 *R4+ R3+ R2¢ R1+ RO

R (Result) equals Rd after the operation.

Set if the result is $00; Cleared otherwise.

Example:

| di rl7, $10

| oop: add r1,r2
dec rl7
brne | oop
nop

Words: 1 (2 bytes)
Cycles: 1

0856D-AVR-08/02

Load constant in ri17

; Add r2 torl
Decrement r17
Branch if r17<>0

Conti nue (do not hi ng)

AIMEL 65

Y R

ATMEL

EICALL — Extended Indirect Call to Subroutine

Description:

Indirect call of a subroutine pointed to by the Z (16 bits) Pointer Register in the Register File and the EIND Register in the
I/O space. This instruction allows for indirect calls to the entire Program memory space. The Stack Pointer uses a post-dec-

rement scheme during EICALL.

This instruction is not implemented for devices with 2 bytes PC, see ICALL. Refer to the device specific instruction set

summary.
Operation:

0] PC(15:0) « Z(15:0)
PC(21:16) « EIND

Syntax: Operands:
0] EICALL None

16-bit Opcode:

| 1001 | 0101 | 0001 | 1001 |

Status Register (SREG) and Boolean Formula:

Program Counter:
See Operation

Stack:

STACK -« PC+1
SP « SP - 3 (3 bytes, 22 bits)

| T H S \Y N C
Example:
| di rl6,$05 ; Set up EIND and Z-pointer
out EIND, r 16
| di r 30, $00
| di r31, $10
ei cal l ; Call to $051000
Words: 1 (2 bytes)
Cycles: 4 (only implemented in devices with 22 bit PC)
66 AVR Instruction Set m————————————

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

EIJMP — Extended Indirect Jump

Description:

Indirect jump to the address pointed to by the Z (16 bits) Pointer Register in the Register File and the EIND Register in the

I/O space. This instruction allows for indirect jumps to the entire Program memory space.

This instruction is not available in all devices. Refer to the device specific instruction set summary.
Operation:

() PC(15:0) ~ Z(15:0)
PC(21:16) — EIND

Syntax: Operands: Program Counter: Stack:

() EIIMP None See Operation Not Affected

16-bit Opcode:

| 1001 | 0100 | 0001 | 1001 |

Status Register (SREG) and Boolean Formula:

| T H S \% N 4 C
Example:
| di rl6,$05 ; Set up EIND and Z-pointer
out EI'ND, r 16
| di r 30, $00
| di r31, $10
eijnp : Junp to $051000

Words: 1 (2 bytes)
Cycles: 2

ATMEL

0856D-AVR-08/02 I ©

67

ATMEL

ELPM — Extended Load Program Memory

Description

Loads one byte pointed to by the Z-register and the RAMPZ Register in the 1/O space, and places this byte in the destina-
tion register Rd. This instruction features a 100% space effective constant initialization or constant data fetch. The Program
memory is organized in 16-bit words while the Z-pointer is a byte address. Thus, the least significant bit of the Z-pointer
selects either low byte (Z, 55 = 0) or high byte (Z, g = 1). This instruction can address the entire Program memory space.
The Z-pointer Register can either be left unchanged by the operation, or it can be incremented. The incrementation applies
to the entire 24-bit concatenation of the RAMPZ and Z-pointer Registers.

Devices with Self-Programming capability can use the ELPM instruction to read the Fuse and Lock bit value. Refer to the
device documentation for a detailed description.

This instruction is not available in all devices. Refer to the device specific instruction set summary.

The result of these combinations is undefined:

ELPM r30, Z+
ELPM r31, Z+

Operation:

0 RO — (RAMPZ:Z)
(ii) Rd — (RAMPZ:Z)
(i) Rd — (RAMPZ:2)

(RAMPZ:Z) — (RAMPZ:Z) + 1

Comment:

RAMPZ:Z: Unchanged, RO implied destination register

RAMPZ:Z: Unchanged
RAMPZ:Z: Post incremented

Syntax: Operands: Program Counter:
() ELPM None, RO implied PC - PC+1
(D) ELPMRd, Z 0<d<31 PC - PC+1
(iii) ELPM Rd, Z+ 0<d<31 PC -« PC+1
16 bit Opcode:
(i) 1001 0101 1101 1000
(ii) 1001 0ood dddd 0110
(iii) 1001 0ood dddd 0111
Status Register (SREG) and Boolean Formula:
| T H S \% N Zz C

Example:
I di
out
I di
I di

el pm r16, Z+

Tabl e_1:

ZL, byte3(Table_1<<1);

RAMPZ, ZL

ZH, byte2(Tabl e_1<<1)
ZL, bytel(Tabl e_1<<1)

Initialize Z-pointer

Load constant from Program
menory pointed to by RAMPZ: Z (Z is r31:r30)

. dw 0x3738 ; 0x38 is addressed when Z, o = 0O
; Ox37 is addressed when Z o = 1
68 AVR Instruction Set —— s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

Words: 1 (2 bytes)
Cycles: 3

AIMEL &

0856D-AVR-08/02

ATMEL

EOR — Exclusive OR

Performs the logical EOR between the contents of register Rd and register Rr and places the result in the destination regis-

Description:
ter Rd.
Operation:
0] Rd « Rd O Rr
Syntax: Operands:
0] EOR Rd,Rr 0<d<31,0=<r<31

16-bit Opcode:

Program Counter:
PC - PC+1

| 0010 | olrd | dddd | reer

Status Register (SREG) and Boolean Formula:

I T H S \% N
— — — =S O =
S: N OV, For signed tests.
V: 0
Cleared
N: R7

Set if MSB of the result is set; cleared otherwise.

Z: R7 *R6 *R5 *R4+ R3¢ R2 *R1+s RO
Set if the result is $00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
eor rd,r4 ; Clear r4

eor r0,r22 ; Bitwi se exclusive or between r0 and r22

Words: 1 (2 bytes)
Cycles: 1

70 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

FMUL - Fractional Multiply Unsigned

Description:
This instruction performs 8-bit x 8-bit - 16-bit unsigned multiplication and shifts the result one bit left.

Rd Rr R1 RO
Multiplicand X Multiplier A Product High Product Low
8 8 16

Let (N.Q) denote a fractional number with N binary digits left of the radix point, and Q binary digits right of the radix point. A
multiplication between two numbers in the formats (N1.Q1) and (N2.Q2) results in the format ((N1+N2).(Q1+Q2)). For sig-
nal processing applications, the format (1.7) is widely used for the inputs, resulting in a (2.14) format for the product. A left
shift is required for the high byte of the product to be in the same format as the inputs. The FMUL instruction incorporates
the shift operation in the same number of cycles as MUL.

The (1.7) format is most commonly used with signed numbers, while FMUL performs an unsigned multiplication. This
instruction is therefore most useful for calculating one of the partial products when performing a signed multiplication with
16-bit inputs in the (1.15) format, yielding a result in the (1.31) format. Note: the result of the FMUL operation may suffer
from a 2's complement overflow if interpreted as a number in the (1.15) format. The MSB of the multiplication before shift-
ing must be taken into account, and is found in the carry bit. See the following example.

The multiplicand Rd and the multiplier Rr are two registers containing unsigned fractional numbers where the implicit radix
point lies between bit 6 and bit 7. The 16-bit unsigned fractional product with the implicit radix point between bit 14 and bit
15 is placed in R1 (high byte) and RO (low byte).

This instruction is not available in all devices. Refer to the device specific instruction set summary.

Operation:
0] R1:RO « Rd x Rr (unsigned (1.15) — unsigned (1.7) x unsigned (1.7))
Syntax: Operands: Program Counter:
0] FMUL Rd,Rr 16 <d<23,16<r<23 PC - PC+1

16-bit Opcode:

| 0000 | 0011 | oddd | irrr |

Status Register (SREG) and Boolean Formula:

| T H S \% N Z C

C: R16
Set if bit 15 of the result before left shift is set; cleared otherwise.

Z: R15*R14 *R13 *R12 *R11 *R10 *R9 *R8 *R7+ R6* R5¢* R4* R3+ R2 *R1* RO
Set if the result is $0000; cleared otherwise.

R (Result) equals R1,R0 after the operation.

AIMEL n

0856D-AVR-08/02 I ©

ATMEL

Example:

chkkkhkhkhkhkhhkhhkhhhhhhkhhhhkhkhkhkhkhkhkhkhkhkkkk**x*
’

; * DESCRI PTI ON
;*Signed fractional nultiply of two 16-bit nunbers with 32-bit result.
;¥ USAGE
;*r19:r18:r17:r16 = (r23:r22 * r21:r20) << 1
R R R KRR R KRR KR KKK KK KK KKK KKK KKK KKK KKK KKK KK KKK KKK KKK KKK KKK KKK KKK KK KKK KKK KKK KKK KKKk
frul s16x16_32

clrr2

frul sr23, r21;((signed)ah * (signed)bh) << 1

movw 19:r18, r1:r0

frulr22, r20;(al * bl) << 1

adcr18, r2

movw 17:r16, r1:r0

frul sur23, r20;((signed)ah * bl) << 1

sbcr19, r2
addr17, rO
adcr18, r1
adcr19, r2
frul sur21, r22;((signed)bh * al) << 1
sbcr19, r2
addr17, rO
adcr18, r1
adcr19, r2

Words: 1 (2 bytes)
Cycles: 2

72

AVR Instruction Set e ———

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

FMULS - Fractional Multiply Signed

Description:
This instruction performs 8-bit x 8-bit - 16-bit signed multiplication and shifts the result one bit left.

Rd Rr R1 RO
Multiplicand X Multiplier - Product High Product Low
8 8 16

Let (N.Q) denote a fractional number with N binary digits left of the radix point, and Q binary digits right of the radix point. A
multiplication between two numbers in the formats (N1.Q1) and (N2.Q2) results in the format ((N1+N2).(Q1+Q2)). For sig-
nal processing applications, the format (1.7) is widely used for the inputs, resulting in a (2.14) format for the product. A left
shift is required for the high byte of the product to be in the same format as the inputs. The FMULS instruction incorporates
the shift operation in the same number of cycles as MULS.

The multiplicand Rd and the multiplier Rr are two registers containing signed fractional numbers where the implicit radix
point lies between bit 6 and bit 7. The 16-bit signed fractional product with the implicit radix point between bit 14 and bit 15
is placed in R1 (high byte) and RO (low byte).

Note that when multiplying 0x80 (-1) with 0x80 (-1), the result of the shift operation is 0x8000 (-1). The shift operation thus
gives a two's complement overflow. This must be checked and handled by software.

This instruction is not available in all devices. Refer to the device specific instruction set summary.

Operation:
() R1:RO « Rd x Rr (signed (1.15) ~ signed (1.7) x signed (1.7))

Syntax: Operands: Program Counter:
0] FMULS Rd,Rr 16 <d<23,16<r<23 PC - PC+1

16-bit Opcode:

| 0000 | 0011 | 1ddd | orrr |

Status Register (SREG) and Boolean Formula:

| T H S \% N Z C

C: R16
Set if bit 15 of the result before left shift is set; cleared otherwise.

Z: R15 *R14 *R13 *R12 *R11 *R10 *R9 *R8 *R7+ R6* R5¢* R4* R3+* R2 *R1* RO
Set if the result is $0000; cleared otherwise.

R (Result) equals R1,R0 after the operation.
Example:

fruls r23,r22 ; Multiply signed r23 and r22 in (1.7) format, result in (1.15) format
movw r23:r22,rl:r0 ; Copy result back in r23:r22

AIMEL 8

0856D-AVR-08/02 I ©

ATMEL

Words: 1 (2 bytes)
Cycles: 2

74 AVR Instruction Set —— s
0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

FMULSU - Fractional Multiply Signed with Unsigned

Description:
This instruction performs 8-bit x 8-bit - 16-bit signed multiplication and shifts the result one bit left.

Rd Rr R1 RO
Multiplicand X Multiplier - Product High Product Low
8 8 16

Let (N.Q) denote a fractional number with N binary digits left of the radix point, and Q binary digits right of the radix point. A
multiplication between two numbers in the formats (N1.Q1) and (N2.Q2) results in the format ((N1+N2).(Q1+Q2)). For sig-
nal processing applications, the format (1.7) is widely used for the inputs, resulting in a (2.14) format for the product. A left
shift is required for the high byte of the product to be in the same format as the inputs. The FMULSU instruction incorpo-
rates the shift operation in the same number of cycles as MULSU.

The (1.7) format is most commonly used with signed numbers, while FMULSU performs a multiplication with one unsigned
and one signed input. This instruction is therefore most useful for calculating two of the partial products when performing a
signed multiplication with 16-bit inputs in the (1.15) format, yielding a result in the (1.31) format. Note: the result of the
FMULSU operation may suffer from a 2's complement overflow if interpreted as a number in the (1.15) format. The MSB of
the multiplication before shifting must be taken into account, and is found in the carry bit. See the following example.

The multiplicand Rd and the multiplier Rr are two registers containing fractional numbers where the implicit radix point lies
between bit 6 and bit 7. The multiplicand Rd is a signed fractional number, and the multiplier Rr is an unsigned fractional
number. The 16-bit signed fractional product with the implicit radix point between bit 14 and bit 15 is placed in R1 (high
byte) and RO (low byte).

This instruction is not available in all devices. Refer to the device specific instruction set summary.

Operation:
0] R1:RO « Rd x Rr (signed (1.15) —~ signed (1.7) x unsigned (1.7))
Syntax: Operands: Program Counter:
0] FMULSU Rd,Rr 16 <d<23,16<r<23 PC - PC+1

16-bit Opcode:

| 0000 | 0011 | 1ddd | irrr |

Status Register (SREG) and Boolean Formula:

| T H S \% N Z C

C: R16
Set if bit 15 of the result before left shift is set; cleared otherwise.

Z: R15 *R14 *R13 *R12 *R11 *R10 *R9 *R8 *R7+ R6* R5¢* R4+ R3+* R2 *R1* RO
Set if the result is $0000; cleared otherwise.

R (Result) equals R1,R0 after the operation.

AIMEL 75

0856D-AVR-08/02 I ©

ATMEL

Example:

chkkkhkhkhkhkhkhkhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhkhhhkhhhkhkhkhkhkhkhkhkhkhkhkhkk***x*%
’

; * DESCRI PTI ON
;*Signed fractional nultiply of two 16-bit nunbers with 32-bit result.
;¥ USAGE
;*r19:r18:r17:r16 = (r23:r22 * r21:r20) << 1
R R KRR R R KRR KR KKK KK
frul s16x16_32

clrr2

frul sr23, r21;((signed)ah * (signed)bh) << 1

movw 19:r18, r1:r0

frulr22, r20;(al * bl) << 1

adcr18, r2

movw 17:r16, r1:r0

frul sur23, r20;((signed)ah * bl) << 1

sbcr19, r2
addr17, rO
adcri18, r1
adcr19, r2
frul sur21, r22;((signed)bh * al) << 1
sbcr19, r2
addr17, rO
adcr18, r1
adcr19, r2

Words: 1 (2 bytes)
Cycles: 2

76

AVR Instruction Set e ———

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

ICALL — Indirect Call to Subroutine

Description:

Indirect call of a subroutine pointed to by the Z (16 bits) Pointer Register in the Register File. The Z-pointer Register is 16
bits wide and allows call to a subroutine within the lowest 64K words (128K bytes) section in the Program memory space.
The Stack Pointer uses a post-decrement scheme during ICALL.

This instruction is not available in all devices. Refer to the device specific instruction set summary.

Operation:

() PC(15:0) — Z(15:0) Devices with 16 bits PC, 128K bytes Program memory maximum.
(i) PC(15:0) — Z(15:0) Devices with 22 bits PC, 8M bytes Program memory maximum.
PC(21:16) — O

Syntax: Operands: Program Counter: Stack:
() ICALL None See Operation STACK « PC+1
SP « SP -2 (2 bytes, 16 bits)

(i) ICALL None See Operation STACK « PC+1
SP « SP - 3 (3 bytes, 22 bits)

16-bit Opcode:

| 1001 | 0101 | 0000 | 1001 |

Status Register (SREG) and Boolean Formula:

| T H S V N VA C
Example:
nmov r30,r0 ; Set offset to call table
icall ; Call routine pointed to by r31:r30

Words: 1 (2 bytes)
Cycles: 3 devices with 16 bit PC
4 devices with 22 bit PC

AIMEL i

0856D-AVR-08/02 I ©

ATMEL

[JMP — Indirect Jump

Description:

Indirect jump to the address pointed to by the Z (16 bits) Pointer Register in the Register File. The Z-pointer Register is 16
bits wide and allows jump within the lowest 64K words (128K bytes) section of Program memory.

This instruction is not available in all devices. Refer to the device specific instruction set summary.

Operation:

() PC « Z(15:0) Devices with 16 bits PC, 128K bytes Program memory maximum.
(i) PC(15:0) — Z(15:0) Devices with 22 bits PC, 8M bytes Program memory maximum.
PC(21:16) — O

Syntax: Operands: Program Counter: Stack:
@, 1IMP None See Operation Not Affected

16-bit Opcode:

| 1001 | 0100 | 0000 | 1001 |

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
nmov r30,r0 ; Set offset to junp table
ijm ; Junp to routine pointed to by r31:r30

Words: 1 (2 bytes)
Cycles: 2

78 AVR Instruction Set —— s
0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

IN - Load an I/O Location to Register

Description:

Loads data from the I/O Space (Ports, Timers, Configuration Registers etc.) into register Rd in the Register File.

Operation:
0] Rd ~ I/O(A)

Syntax: Operands: Program Counter:
0] IN Rd,A 0<d<31,0<A<63 PC - PC+1

16-bit Opcode:

| 1011 | 0AAd | dddd | AAAA|

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
in r25, $16 ; Read Port B
cpi r25,4 ; Conpare read value to constant
breq exit ; Branch if r25=4
exit: nop ; Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1

ATMEL

0856D-AVR-08/02 I ®

79

ATMEL

INC — Increment

Description:
Adds one -1- to the contents of register Rd and places the result in the destination register Rd.

The C Flag in SREG is not affected by the operation, thus allowing the INC instruction to be used on a loop counter in mul-
tiple-precision computations.

When operating on unsigned numbers, only BREQ and BRNE branches can be expected to perform consistently. When
operating on two’s complement values, all signed branches are available.

Operation:
(i) Rd « Rd+1

Syntax: Operands: Program Counter:
0] INC Rd 0<sd<31 PC - PC+1

16-bit Opcode:

| 1001 | o10d | dddd | 0011 |

Status Register and Boolean Formula:

| T H S \% N Z Cc

=S < < < —_

S: NOV
For signed tests.

V: R7 «R6 *R5 *R4 «R3¢ R2 «R1 *RO
Set if two’s complement overflow resulted from the operation; cleared otherwise. Two’s complement overflow occurs
if and only if Rd was $7F before the operation.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7 *R6 *R5 *R4+R3 *R2¢ R1s RO
Set if the result is $00; Cleared otherwise.

R (Result) equals Rd after the operation.

Example:
clr r22 ; clear r22
| oop: inc r22 ; increnent r22
cpi r22, $4F ; Conpare r22 to $4f
brne | oop ; Branch if not equal
nop ; Continue (do not hing)
80 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

Words: 1 (2 bytes)
Cycles: 1

AIMEL o

0856D-AVR-08/02

ATMEL

JMP —Jump

Description:
Jump to an address within the entire 4M (words) Program memory. See also RIMP.

This instruction is not available in all devices. Refer to the device specific instruction set summary.

Operation:
0] PC - k
Syntax: Operands: Program Counter: Stack:
() JMP k 0<k<4M PC « k Unchanged

32-bit Opcode:

1001 010k kkkk 110k
kkkk kkkk kkkk kkkk

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
nmov rl, r0 ; Copy rOtorl
jmp farplc ; Unconditional junp
farplc: nop ; Junp destination (do not hing)

Words: 2 (4 bytes)
Cycles: 3

82 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

LD — Load Indirect from Data Space to Register using Index X

Description:

Loads one byte indirect from the data space to a register. For parts with SRAM, the data space consists of the Register
File, /O memory and internal SRAM (and external SRAM if applicable). For parts without SRAM, the data space consists of
the Register File only. The EEPROM has a separate address space.

The data location is pointed to by the X (16 bits) Pointer Register in the Register File. Memory access is limited to the cur-
rent data segment of 64K bytes. To access another data segment in devices with more than 64K bytes data space, the
RAMPX in register in the I/O area has to be changed.

The X-pointer Register can either be left unchanged by the operation, or it can be post-incremented or pre-decremented.
These features are especially suited for accessing arrays, tables, and Stack Pointer usage of the X-pointer Register. Note
that only the low byte of the X-pointer is updated in devices with no more than 256 bytes data space. For such devices, the
high byte of the pointer is not used by this instruction and can be used for other purposes. The RAMPX Register in the /O
area is updated in parts with more than 64K bytes data space or more than 64K bytes Program memory, and the incre-
ment/decrement is added to the entire 24-bit address on such devices.

Not all variants of this instruction is available in all devices. Refer to the device specific instruction set summary.

The result of these combinations is undefined:

LD r26, X+
LD r27, X+
LD r26, -X
LD r27, -X

Using the X-pointer:

Operation: Comment:

() Rd « (X) X: Unchanged

(i) Rd « (X) X e X+1 X: Post incremented

(iii) X< X-1 Rd « (X) X: Pre decremented
Syntax: Operands: Program Counter:

() LD Rd, X 0<ds<31 PC - PC+1

(i) LD Rd, X+ 0<ds<31 PC - PC+1

(iii) LD Rd, -X 0<ds<31 PC -« PC+1

16-bit Opcode:

(i) 1001 000d dddd 1100
(i) 1001 000d dddd 1101
Gii) 1001 000d dddd 1110

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
clr r27 ; Clear X high byte
| di r26, $60 ; Set X low byte to $60

AIMEL 63

0856D—-AVR—-08/02 I

Id
Id
I di
Id
Id

ro, X+
r1, X
r26, $63
r2, X
r3,-X

Words: 1 (2 bytes)
Cycles: 2

84

Load rO with data
Load r1 with data
Set X low byte to
Load r2 with data
Load r3 with data

ATMEL

space | oc.
space | oc.

$63

space | oc.
space | oc.

$60(X post inc)
$61

$63
$62(X pre dec)

AVR Instruction Set e ———

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

LD (LDD) — Load Indirect from Data Space to Register using Index Y

Description:

Loads one byte indirect with or without displacement from the data space to a register. For parts with SRAM, the data
space consists of the Register File, I/O memory and internal SRAM (and external SRAM if applicable). For parts without
SRAM, the data space consists of the Register File only. The EEPROM has a separate address space.

The data location is pointed to by the Y (16 bits) Pointer Register in the Register File. Memory access is limited to the cur-
rent data segment of 64K bytes. To access another data segment in devices with more than 64K bytes data space, the
RAMPY in register in the I/O area has to be changed.

The Y-pointer Register can either be left unchanged by the operation, or it can be post-incremented or pre-decremented.
These features are especially suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer Register. Note
that only the low byte of the Y-pointer is updated in devices with no more than 256 bytes data space. For such devices, the
high byte of the pointer is not used by this instruction and can be used for other purposes. The RAMPY Register in the /O
area is updated in parts with more than 64K bytes data space or more than 64K bytes Program memory, and the incre-
ment/decrement/displacement is added to the entire 24-bit address on such devices.

Not all variants of this instruction is available in all devices. Refer to the device specific instruction set summary.

The result of these combinations is undefined:

LD r28, Y+
LD r29, Y+
LD r28, -Y
LD r29, -Y

Using the Y-pointer:

Operation: Comment:

() Rd ~ (Y) Y: Unchanged

(i) Rd « (Y) Y VY+1 Y: Post incremented

(iii) Y-Y-1 Rd « (Y) Y: Pre decremented

(iiii) Rd « (Y+Qq) Y: Unchanged, g: Displacement
Syntax: Operands: Program Counter:

(i) LD Rd, Y 0<d<31 PC -« PC+1

(ii) LD Rd, Y+ 0<d<31 PC -« PC+1

(iii) LD Rd, -Y 0<d<31 PC -« PC+1

(iiii) LDD Rd, Y+q 0<d<31,0<gq<63 PC - PC+1

AIMEL &

0856D—-AVR—-08/02 I

ATMEL

16-bit Opcode:
(i) 1000 000d dddd 1000
(ii) 1001 000d dddd 1001
(iii) 1001 000d dddd 1010
(iiii) 10q0 qqod dddd 1qqq
Status Register (SREG) and Boolean Formula:
| T H S \% N C
Example:
clr r29 Clear Y high byte
| di r28, $60 Set Y low byte to $60
Id ro, Y+ Load rO with data space loc. $60(Y post inc)
Id rl, Y Load r1 with data space loc. $61
| di r28, $63 Set Y low byte to $63
Id r2,Y Load r2 with data space loc. $63
I d r3,-Y Load r3 with data space loc. $62(Y pre dec)
ldd r4,Y+2 Load r4 with data space loc. $64

Words: 1 (2 bytes)
Cycles: 2

86

AVR Instruction Set e ———

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

LD (LDD) — Load Indirect From Data Space to Register using Index Z

Description:

Loads one byte indirect with or without displacement from the data space to a register. For parts with SRAM, the data
space consists of the Register File, I/O memory and internal SRAM (and external SRAM if applicable). For parts without
SRAM, the data space consists of the Register File only. The EEPROM has a separate address space.

The data location is pointed to by the Z (16 bits) Pointer Register in the Register File. Memory access is limited to the cur-
rent data segment of 64K bytes. To access another data segment in devices with more than 64K bytes data space, the
RAMPZ in register in the 1/O area has to be changed.

The Z-pointer Register can either be left unchanged by the operation, or it can be post-incremented or pre-decremented.
These features are especially suited for Stack Pointer usage of the Z-pointer Register, however because the Z-pointer
Register can be used for indirect subroutine calls, indirect jumps and table lookup, it is often more convenient to use the X
or Y-pointer as a dedicated Stack Pointer. Note that only the low byte of the Z-pointer is updated in devices with no more
than 256 bytes data space. For such devices, the high byte of the pointer is not used by this instruction and can be used for
other purposes. The RAMPZ Register in the I/O area is updated in parts with more than 64K bytes data space or more than
64K bytes Program memory, and the increment/decrement/displacement is added to the entire 24-bit address on such
devices.

Not all variants of this instruction is available in all devices. Refer to the device specific instruction set summary.
For using the Z-pointer for table lookup in Program memory see the LPM and ELPM instructions.

The result of these combinations is undefined:

LD r30, Z+
LD r31, Z+
LD r30, -Z
LD r31, -Z

Using the Z-pointer:

Operation: Comment:

() Rd — (2) Z: Unchanged

(i) Rd — (2) Z-Z+1 Z: Post increment

(iii) Z-Z-1 Rd — (2) Z: Pre decrement

(iiii) Rd < (Z+q) Z: Unchanged, q: Displacement
Syntax: Operands: Program Counter:

() LD Rd, Z 0<ds<31 PC - PC+1

(i) LD Rd, Z+ 0<ds<31 PC - PC+1

(iii) LD Rd, -Z 0<ds<31 PC - PC+1

(iiii) LDD Rd, Z+q 0<d<31,0<g<63 PC - PC+1

AIMEL 87

0856D-AVR-08/02 I ©

16-bit Opcode:

ATMEL

(i) 1000 00od dddd 0000
(ii) 1001 00o0d dddd 0001
(iii) 1001 00od dddd 0010
(iiii) 10q0 qqod dddd 0qqq
Status Register (SREG) and Boolean Formula:
| T H S V N Zz C
Example:
clr r31 Clear Z high byte
| di r 30, $60 Set Z low byte to $60
Id ro, Z+ Load rO with data space |loc. $60(Z post inc)
I d rl, z Load r1 with data space loc. $61
| di r 30, $63 Set Z low byte to $63
I d r2, 2 Load r2 with data space |loc. $63
Id r3,-2Z Load r3 with data space loc. $62(Z pre dec)
ldd r4,2z+2 Load r4 with data space loc. $64

Words: 1 (2 bytes)
Cycles: 2

88

AVR Instruction Set e ———

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

LDI — Load Immediate

Description:

Loads an 8 bit constant directly to register 16 to 31.

Operation:
0] Rd - K
Syntax: Operands: Program Counter:
0] LDI Rd,K 16<d<31,0<K< 255 PC - PC+1
16-bit Opcode:
| 1110 | KKKK | dddd | KKKK |
Status Register (SREG) and Boolean Formula:
| T H S V N C
Example:
clr r31 ; Clear Z high byte

| di r30,$F0 ; Set Z low byte to $FO

I pm ; Load constant from Program

menory pointed to by Z

Words: 1 (2 bytes)
Cycles: 1

ATMEL

0856D-AVR-08/02 I

®

89

ATMEL

LDS — Load Direct from Data Space

Description:

Loads one byte from the data space to a register. For parts with SRAM, the data space consists of the Register File, /0
memory and internal SRAM (and external SRAM if applicable). For parts without SRAM, the data space consists of the reg-
ister file only. The EEPROM has a separate address space.

A 16-bit address must be supplied. Memory access is limited to the current data segment of 64K bytes. The LDS instruction
uses the RAMPD Register to access memory above 64K bytes. To access another data segment in devices with more than
64K bytes data space, the RAMPD in register in the 1/O area has to be changed.

This instruction is not available in all devices. Refer to the device specific instruction set summary.

Operation:
0] Rd < (k)

Syntax: Operands: Program Counter:
0] LDS Rd,k 0<d=<31,0<k=<65535 PC -« PC+2

32-bit Opcode:

1001 0ood dddd 0000
kkkk kkkk kkkk kkkk

Status Register (SREG) and Boolean Formula:

| T H S V N VA C
Example:
lds r2, $FF00 ; Load r2 with the contents of data space |ocation $FF00
add r2,r1 ; add rl1 tor2
sts $FF00,r2 ; Wite back

Words: 2 (4 bytes)
Cycles: 2

90 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

LPM — Load Program Memory

Description:

Loads one byte pointed to by the Z-register into the destination register Rd. This instruction features a 100% space effec-
tive constant initialization or constant data fetch. The Program memory is organized in 16-bit words while the Z-pointer is a
byte address. Thus, the least significant bit of the Z-pointer selects either low byte (Z, 55 = 0) or high byte (Z, 55 = 1). This
instruction can address the first 64K bytes (32K words) of Program memory. The Z-pointer Register can either be left
unchanged by the operation, or it can be incremented. The incrementation does not apply to the RAMPZ Register.

Devices with Self-Programming capability can use the LPM instruction to read the Fuse and Lock bit values. Refer to the
device documentation for a detailed description.

Not all variants of the LPM instruction are available in all devices. Refer to the device specific instruction set summary. The
LPM instruction is not implemented at all in the AT90S1200 device.

The result of these combinations is undefined:

LPM r30, Z+
LPMr31, Z+
Operation: Comment:
0] RO < (2) Z: Unchanged, RO implied destination register
(i) Rd — (2) Z: Unchanged
(iii) Rd — (2) Z-7Z+1 Z: Post incremented
Syntax: Operands: Program Counter:
() LPM None, RO implied PC - PC+1
(i) LPMRd, Z 0<d<31 PC - PC+1
(iii) LPM Rd, Z+ 0<d<31 PC -« PC+1

16-bit Opcode:

(i) 1001 0101 1100 1000
(i) 1001 000d dddd 0100
Gii) 1001 000d dddd 0101

Status Register (SREG) and Boolean Formula:

| T H S \% N Z C

Example:
I di ZH, high(Table_1<<1); Initialize Z-pointer
| di ZL, | ow Tabl e_1<<1)
Ipm ril6, Z ; Load constant from Program
Menory pointed to by Z (r31:r30)
Tabl e_1:
. dw 0x5876 ; 0x76 is addresses when Z g
; 0x58 is addresses when Z g

AIMEL o

0856D—-AVR—-08/02 I

ATMEL

Words: 1 (2 bytes)
Cycles: 3

92 AVR Instruction Set —— s
0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

LSL — Logical Shift Left

Description:

Shifts all bits in Rd one place to the left. Bit O is cleared. Bit 7 is loaded into the C Flag of the SREG. This operation effec-
tively multiplies signed and unsigned values by two.

Operation:
(i)
Cl<]|] b7------------------ b0 < 0
Syntax: Operands: Program Counter:
0] LSL Rd 0<sd<31 PC - PC+1

16-bit Opcode: (see ADD Rd,Rd)

| 0000 | 11dd | dddd | dddd |

Status Register (SREG) and Boolean Formula:

I T H S \% N z C
H: Rd3
S: N OV, For signed tests.
V: N O C (For N and C after the shift)

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7¢ R6 *R5¢ R4 R3 +R2+ R1+ RO
Set if the result is $00; cleared otherwise.

C: Rd7
Set if, before the shift, the MSB of Rd was set; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
add ro, r4 ; Add r4 to roO
I sl ro ; Multiply rO by 2

Words: 1 (2 bytes)
Cycles: 1

AIMEL 9

0856D-AVR-08/02 I ©

ATMEL

LSR — Logical Shift Right

Description:

Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is loaded into the C Flag of the SREG. This operation effec-
tively divides an unsigned value by two. The C Flag can be used to round the result.

Operation:
0 - b7-------memm- - b0 -1C
Syntax: Operands: Program Counter:
0] LSR Rd 0<sd<31 PC - PC+1

16-bit Opcode:

| 1001 | o1o0d | dddd | 0110 |

Status Register (SREG) and Boolean Formula:

I T H S v N z C
- _ _ - - 0 - -
S: N OV, For signed tests.
V: N O C (For N and C after the shift)
N: 0
z R7+ R6 *R5* R4+ R3 *R2¢ R1+ RO

Set if the result is $00; cleared otherwise.

C: RdO
Set if, before the shift, the LSB of Rd was set; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
add ro,r4 ; Add r4 tor0
I'sr ro ; Divide r0O by 2

Words: 1 (2 bytes)
Cycles: 1

94 AVR Instruction Set —— s
0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

MOV — Copy Register

Description:

This instruction makes a copy of one register into another. The source register Rr is left unchanged, while the destination
register Rd is loaded with a copy of Rr.

Operation:
(i) Rd — Rr

Syntax: Operands: Program Counter:
0] MOV Rd,Rr 0<d<31,0<r<31 PC - PC+1

16-bit Opcode:

| 0010 | 11rd | dddd |

rrrr |

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
nmov ri16, r0 Copy r0 to rl6
cal | check Cal | subroutine
check: cpi rie, $11 Conpare rl16 to $11

ret

Words: 1 (2 bytes)
Cycles: 1

0856D-AVR-08/02

Return from subroutine

ATMEL

Y R

95

ATMEL

MOVW - Copy Register Word

Description:

This instruction makes a copy of one register pair into another register pair. The source register pair Rr+1:Rr is left
unchanged, while the destination register pair Rd+1:Rd is loaded with a copy of Rr + 1:Rr.

This instruction is not available in all devices. Refer to the device specific instruction set summary.

Operation:
() Rd+1:Rd « Rr+1:Rr
Syntax: Operands: Program Counter:
0] MOVW Rd+1:Rd,Rr+1Rrd O {0,2,...,30}, r 0 {0,2,...,30} PC -« PC+1
16-bit Opcode:
| 0000 | 0001 | dddd | reer |
Status Register (SREG) and Boolean Formula:
| T H S \Y N Z
Example:
nmvw r17:16,r1:r0 ; Copy r1:r0 to rl7:r16
call check ; Call subroutine
check: cpi rie, $11 Conpare rl16 to $11
cpi ri7, $32 Conpare rl7 to $32
ret ; Return from subroutine
Words: 1 (2 bytes)
Cycles: 1
96 AVR Instruction Set m———————

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

MUL — Multiply Unsigned

Description:

This instruction performs 8-bit x 8-bit - 16-bit unsigned multiplication.

Rd Rr R1 RO
Multiplicand X Multiplier - Product High Product Low
8 8 16

The multiplicand Rd and the multiplier Rr are two registers containing unsigned numbers. The 16-bit unsigned product is
placed in R1 (high byte) and RO (low byte). Note that if the multiplicand or the multiplier is selected from RO or R1 the result
will overwrite those after multiplication.

This instruction is not available in all devices. Refer to the device specific instruction set summary.

Operation:
() R1:RO « Rd x Rr (unsigned — unsigned x unsigned)

Syntax: Operands: Program Counter:
0] MUL Rd,Rr 0<d<31,0=<r<31 PC -« PC+1

16-bit Opcode:

| 1001 | 11rd | dddd | reer |

Status Register (SREG) and Boolean Formula:

| T H S \% N Z Cc

C: R15
Set if bit 15 of the result is set; cleared otherwise.

Z: R15 *R14 *R13 *R12 *R11 *R10 *R9 *R8 *R7+ R6* R5¢* R4¢ R3+* R2 *R1* RO
Set if the result is $0000; cleared otherwise.

R (Result) equals R1,R0 after the operation.

Example:
mul r5,r4 ; Multiply unsigned r5 and r4
mvw r4,r0 ; Copy result back inr5:r4

Words: 1 (2 bytes)
Cycles: 2

AIMEL o7

0856D-AVR-08/02 I ©

ATMEL

MULS — Multiply Signed

Description:
This instruction performs 8-bit x 8-bit - 16-bit signed multiplication.

Rd Rr R1 RO
Multiplicand X Multiplier - Product High Product Low
8 8 16

The multiplicand Rd and the multiplier Rr are two registers containing signed numbers. The 16-bit signed product is placed
in R1 (high byte) and RO (low byte).

This instruction is not available in all devices. Refer to the device specific instruction set summary.

Operation:
() R1:RO - Rd x Rr (signed — signed x signed)

Syntax: Operands: Program Counter:
0] MULS Rd,Rr 16<d<31,16<r<31 PC -« PC+1

16-bit Opcode:

| 0000 | 0010 | dddd | rrer |

Status Register (SREG) and Boolean Formula:

| T H S \% N Z Cc

C: R15
Set if bit 15 of the result is set; cleared otherwise.

Z: R15 *R14 *R13 *R12 *R11 *R10 *R9 *R8 *R7+ R6* R5¢* R4* R3¢ R2 *R1* RO
Set if the result is $0000; cleared otherwise.

R (Result) equals R1,R0 after the operation.

Example:
muls r21,r20 ; Miltiply signed r21 and r20
movw r20,r0 ; Copy result back in r21:r20

Words: 1 (2 bytes)
Cycles: 2

98 AVR Instruction Set —— s
0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

MULSU — Multiply Signed with Unsigned

Description:
This instruction performs 8-bit x 8-bit - 16-bit multiplication of a signed and an unsigned number.

Rd Rr R1 RO
Multiplicand X Multiplier - Product High Product Low
8 8 16

The multiplicand Rd and the multiplier Rr are two registers. The multiplicand Rd is a signed number, and the multiplier Rr is
unsigned. The 16-bit signed product is placed in R1 (high byte) and RO (low byte).

This instruction is not available in all devices. Refer to the device specific instruction set summary.

Operation:
() R1:RO « Rd x Rr (signed — signed x unsigned)

Syntax: Operands: Program Counter:
0] MULSU Rd,Rr 16<d<23,16<r<23 PC -« PC+1

16-bit Opcode:

| 0000 | 0011 | oddd | orrr |

Status Register (SREG) and Boolean Formula:

| T H S \% N Z Cc

— — —_ —_ — — < <

C: R15
Set if bit 15 of the result is set; cleared otherwise.

Z: R15 *R14 *R13 *R12 *R11 *R10 *R9 *R8 *R7+ R6* R5¢* R4* R3+ R2 *R1 RO
Set if the result is $0000; cleared otherwise.

R (Result) equals R1,R0 after the operation.

Example:
R R R KRR R KRR KR KK KKK KK Kk
; * DESCRI PTI ON
;*Signed nultiply of two 16-bit nunbers with 32-bit result.
;¥ USAGE
;*r19:r18:r17:r16 = r23:r22 * r21:r20
R R KRR R R KRR KRR KKK KKK KKK KKK KKK KKK KKK KKK KK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KK
mul s16x16_32:
clrr2
mul sr23, r21; (signed)ah * (signed)bh

AIMEL 9

0856D-AVR-08/02 I ©

ATMEL

movw 19:r18, r1:r0

mul r22, r20; al * bl

movw 17:r16, rl1:r0

mul sur 23, r20; (signed)ah * bl
sbcr19, r2

addr17, rO

adcr18, r1

adcr19, r2

mul sur21, r22; (signed)bh * al
sbcr19, r2

addr17, rO

adcri18, r1

adcr19, r2

ret

Words: 1 (2 bytes)
Cycles: 2

100 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

NEG — Two’s Complement

Description:

Replaces the contents of register Rd with its two’s complement; the value $80 is left unchanged.
Operation:

0 Rd « $00 - Rd

Syntax: Operands: Program Counter:
0] NEG Rd 0<sd<31 PC -« PC+1

16-bit Opcode:

| 1001 | o1o0d | dddd | 0001 |

Status Register (SREG) and Boolean Formula:

| T H S \% N Z Cc

=S < < < =S <

H: R3 + Rd3
Set if there was a borrow from bit 3; cleared otherwise

S: NOV
For signed tests.

V: R7+ R6 *R5¢ R4 R3 *R2¢ R1¢ RO
Set if there is a two’s complement overflow from the implied subtraction from zero; cleared otherwise. A two’'s com-
plement overflow will occur if and only if the contents of the Register after operation (Result) is $80.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7¢ R6 *R5¢ R4 R3 *R2+ R1+ RO
Set if the result is $00; Cleared otherwise.

C: R7+R6+R5+R4+R3+R2+R1+R0
Set if there is a borrow in the implied subtraction from zero; cleared otherwise. The C Flag will be set in all cases
except when the contents of Register after operation is $00.

R (Result) equals Rd after the operation.

Example:
sub rl11,r0 ; Subtract rO fromrll
brpl positive ; Branch if result positive
neg rll ; Take two’'s conpl enent of rill
positive: nop ; Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1

Alm L 101

0856D-AVR-08/02 I ®

ATMEL

NOP — No Operation

Description:

This instruction performs a single cycle No Operation.

Operation:
(i) No

Syntax: Operands: Program Counter:
0] NOP None PC - PC+1

16-bit Opcode:

| 0000 | 0000 | 0000 | 0000 |

Status Register (SREG) and Boolean Formula:

| T H S V N Zz C
Example:
clr ri6 ; Clear rlé
ser ri7 ; Set rl7
out $18,r16 ; Wite zeros to Port B
nop ; Wait (do not hi ng)
out $18,r17 ; Wite ones to Port B

Words: 1 (2 bytes)
Cycles: 1

102 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

OR - Logical OR

Description:

Performs the logical OR between the contents of register Rd and register Rr and places the result in the destination register
Rd.

Operation:
() Rd « Rdv Rr

Syntax: Operands: Program Counter:
0] OR Rd,Rr 0<d<31,0<r<31 PC - PC+1

16-bit Opcode:

| 0010 | 10rd | dddd | reer |

Status Register (SREG) and Boolean Formula:

I T H S \% N z C
— — — =S O =S = —
S: N OV, For signed tests.
V: 0
Cleared
N: R7

Set if MSB of the result is set; cleared otherwise.

Z: R7¢ R6 *R5¢ R4+ R3 +R2+ R1+ RO
Set if the result is $00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
or ri5,r16 ; Do bitwi se or between registers
bst r15, 6 ; Store bit 6 of r15in T Flag
brts ok ; Branch if T Flag set
ok: nop ; Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1

Alm L 103

0856D-AVR-08/02 I ®

ATMEL

ORI - Logical OR with Immediate

Description:

Performs the logical OR between the contents of register Rd and a constant and places the result in the destination register
Rd.

Operation:
0] Rd « Rd v K

Syntax: Operands: Program Counter:
0] ORI Rd,K 16<d<31,0<K< 255 PC -« PC+1

16-bit Opcode:

| 0110 | KKKK | dddd | KKKK |

Status Register (SREG) and Boolean Formula:

I T H S \% N z C
— — — =S O =S = —
S: N OV, For signed tests.
V: 0
Cleared
N: R7

Set if MSB of the result is set; cleared otherwise.

Z: R7¢ R6 *R5¢ R4+ R3 +R2+ R1+ RO
Set if the result is $00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
ori rl6,$F0 ; Set high nibble of ri16
ori r17z, 1 ; Set bit 0 of ri17

Words: 1 (2 bytes)
Cycles: 1

104 AVR Instruction Set —— s
0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

OUT — Store Register to I/0O Location

Description:

Stores data from register Rr in the Register File to I/O Space (Ports, Timers, Configuration Registers etc.).

Operation:
(i) I/O(A) — Rr
Syntax: Operands: Program Counter:
0] OuUT A,Rr 0<r<31,0<cA<63 PC -« PC+1
16-bit Opcode:
| 1011 | 1A | reer | AAAA |
Status Register (SREG) and Boolean Formula:
| T H S \% N 4 C
Example:
clr ril6 ; Clear rlé
ser ri17 ; Set rl7
out $18,r16 ; Wite zeros to Port B
nop ; Wait (do not hi ng)
out $18,r17 ; Wite ones to Port B

Words: 1 (2 bytes)
Cycles: 1

0856D-AVR-08/02

ATMEL

Y R

105

ATMEL

POP — Pop Register from Stack

Description:

This instruction loads register Rd with a byte from the STACK. The Stack Pointer is pre-incremented by 1 before the POP.

This instruction is not available in all devices. Refer to the device specific instruction set summary.

Operation:

0] Rd ~ STACK
Syntax: Operands:

0] POP Rd 0<sd<31
16-bit Opcode:

| 1001 | 000d | dddd | 1111 |

Status Register (SREG) and Boolean Formula:

| T H S \% N Z

Program Counter: Stack:
PC -« PC+1 SP - SP+1
C

Example:
cal | routine Cal | subroutine
routine: push ri4 Save r14 on the Stack
push ri3 Save r13 on the Stack
pop ri3 Restore r13
pop ril4 Restore r14
ret ; Return from subroutine

Words: 1 (2 bytes)
Cycles: 2

106

AVR Instruction Set e ———

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

PUSH — Push Register on Stack

Description:

This instruction stores the contents of register Rr on the STACK. The Stack Pointer is post-decremented by 1 after the
PUSH.

This instruction is not available in all devices. Refer to the device specific instruction set summary.

Operation:
0] STACK < Rr
Syntax: Operands: Program Counter: Stack:
0] PUSH Rr O0<r<3l PC - PC+1 SP - SP-1

16-bit Opcode:

| 1001 | 001d | dddd | 1111 |

Status Register (SREG) and Boolean Formula:

| T H S V N VA C
Example:
cal | routine; Call subroutine
routine: push ri4 ; Save rl14 on the Stack
push ri3 ; Save r13 on the Stack
pop ri3 ; Restore ri13
pop ril4 ; Restore ri4
ret ; Return from subroutine

Words: 1 (2 bytes)
Cycles: 2

Alm L 107

0856D-AVR-08/02 I ®

ATMEL

RCALL — Relative Call to Subroutine

Description:

Relative call to an address within PC - 2K + 1 and PC + 2K (words). The return address (the instruction after the RCALL) is
stored onto the Stack. (See also CALL). In the assembler, labels are used instead of relative operands. For AVR microcon-
trollers with Program memory not exceeding 4K words (8K bytes) this instruction can address the entire memory from

every address location. The Stack Pointer uses a post-decrement scheme during RCALL.

Operation:

() PC -« PC+k+1 Devices with 16 bits PC, 128K bytes Program memory maximum.
(i) PC -« PC+k+1 Devices with 22 bits PC, 8M bytes Program memory maximum.

Syntax: Operands: Program Counter:
0] RCALL k 2K <k <2K PC -« PC+k+1
(i) RCALL k 2K <k <2K PC -« PC+k+1

16-bit Opcode:

| 1101 | kkkk | kkkk

kkkk |

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
rcall routine Cal | subroutine
routine: push ri4 Save r14 on the Stack
pop ri4 Restore r14

ret

Words: 1 (2 bytes)
Cycles: 3 devices with 16-bit PC
4 devices with 22-bit PC

Return from subroutine

Stack:
STACK -« PC+1
SP « SP -2 (2 bytes, 16 bits)

STACK -« PC+1
SP « SP - 3 (3 bytes, 22 bits)

108 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

RET — Return from Subroutine

Description:

Returns from subroutine. The return address is loaded from the STACK. The Stack Pointer uses a pre-increment scheme

during RET.

Operation:

() PC(15:0) — STACKDevices with 16 bits PC, 128K bytes Program memory maximum.
(i) PC(21:0) — STACKDevices with 22 bits PC, 8M bytes Program memory maximum.

Syntax: Operands:
0] RET None
(i) RET None

16-bit Opcode:

Program Counter:
See Operation

See Operation

| 1001 | 0101 | 0000 | 1000 |

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz
Example:
cal | routine Cal | subroutine
routine: push ri4 Save r14 on the Stack
pop rila Restore r14

ret

Words: 1 (2 bytes)
Cycles: 4 devices with 16-bit PC
5 devices with 22-bit PC

0856D-AVR-08/02

Return from subroutine

ATMEL

I)

Stack:
SP ~SP + 2, (2bytes, 16 bits)

SP ~ SP + 3, (3bytes,22 bits)

109

ATMEL

RETI — Return from Interrupt

Description:

Returns from interrupt. The return address is loaded from the STACK and the Global Interrupt Flag is set.

Note that the Status Register is not automatically stored when entering an interrupt routine, and it is not restored when
returning from an interrupt routine. This must be handled by the application program. The Stack Pointer uses a pre-incre-

ment scheme during RETI.

Operation:
() PC(15:0) — STACKDevices with 16 bits PC, 128K bytes Program memory maximum.
(i) PC(21:0) — STACKDevices with 22 bits PC, 8M bytes Program memory maximum.
Syntax: Operands: Program Counter: Stack
() RETI None See Operation SP ~ SP + 2 (2 bytes, 16 bits)
(i) RETI None See Operation SP « SP + 3 (3 bytes, 22 bits)
16-bit Opcode:
| 1001 | 0101 | 0001 | 1000 |
Status Register (SREG) and Boolean Formula:
| T H S \% N Zz C
1 — — — — — — —
I: 1
The | Flag is set.
Example:
extint: push ro Save r0 on the Stack

pop ro
reti
Words: 1 (2 bytes)

Cycles: 4 devices with 16-bit PC
5 devices with 22-bit PC

Restore r0
Return and enable interrupts

110 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

RJIJMP — Relative Jump

Description:

Relative jump to an address within PC - 2K +1 and PC + 2K (words). In the assembler, labels are used instead of relative
operands. For AVR microcontrollers with Program memory not exceeding 4K words (8K bytes) this instruction can address
the entire memory from every address location.

Operation:
0] PC -« PC+k+1

Syntax: Operands: Program Counter: Stack
() RJIMP k 2K <k <2K PC -« PC+k+1 Unchanged

16-bit Opcode:

| 1100 | kkkk | kkkk | kkkk |

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
cpi rl6, $42 ; Conpare r16 to $42
brne error ; Branch if rlé <> $42
rjnm ok ; Uncondi tional branch
error: add r16,r17 ; Add r17 to ri6
inc ri6 ; Increnment r16
ok: nop ; Destination for rjnp (do not hing)

Words: 1 (2 bytes)
Cycles: 2

Alm L 111

0856D-AVR-08/02 I ©

ATMEL

ROL — Rotate Left trough Carry

Description:

Shifts all bits in Rd one place to the left. The C Flag is shifted into bit O of Rd. Bit 7 is shifted into the C Flag. This operation,
combined with LSL, effectively multiplies multi-byte signed and unsigned values by two.

Operation:
C b7 ----eee - b0 ~1C
Syntax: Operands: Program Counter:
0] ROL Rd 0<sd<31 PC -« PC+1

16-bit Opcode: (see ADC Rd,Rd)

| 0001 | 11dd | dddd | dddd |

Status Register (SREG) and Boolean Formula:

I T H S \% N z C
H: Rd3
S: N OV, For signed tests.
V: N O C (For N and C after the shift)

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7¢ R6 *R5¢ R4 R3 *R2+ R1s RO
Set if the result is $00; cleared otherwise.

C: Rd7
Set if, before the shift, the MSB of Rd was set; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
I sl ris ; Multiply r19:r18 by two
rol ri19 ; r19:r18 is a signed or unsigned two-byte integer
brcs oneenc ; Branch if carry set
oneenc: nop ; Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1

112 AVR Instruction Set —— s
0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

ROR — Rotate Right through Carry

Description:

Shifts all bits in Rd one place to the right. The C Flag is shifted into bit 7 of Rd. Bit 0 is shifted into the C Flag. This opera-
tion, combined with ASR, effectively divides multi-byte signed values by two. Combined with LSR it effectively divides multi-
byte unsigned values by two. The Carry Flag can be used to round the result.

Operation:
Cl-| b7---ccmeeeeea bo | -|cC

Syntax: Operands: Program Counter:

(i) ROR Rd 0<d<31 PC -« PC+1
16-bit Opcode:

| 1001 | 010d | dddd | 0111 |

Status Register (SREG) and Boolean Formula:

I T H S \Y N C

S: N OV, For signed tests.

V: N O C (For N and C after the shift)

N: R7

Set if MSB of the result is set; cleared otherwise.

Z: R7¢ R6 *R5¢ R4+ R3 *R2+ R1+ RO
Set if the result is $00; cleared otherwise.

C: RdO

Set if, before the shift, the LSB of Rd was set; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
I'sr ri19 ; Divide r19:r18 by two
ror ri8 ; r19:r18 is an unsigned two-byte integer
brcc zeroencl ; Branch if carry cleared
asr ri7 ; Divide r17:r16 by two
ror rl6 ; rl7:rl16 is a signed two-byte integer
brcc zeroenc2 ; Branch if carry cleared

zeroencl: nop ; Branch destination (do not hing)

ATMEL

0856D-AVR-08/02 I

®

113

ATMEL

zeroencl: nop ; Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1

114 AVR Instruction Set —— s
0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

SBC — Subtract with Carry

Description:

Subtracts two registers and subtracts with the C Flag and places the result in the destination register Rd.

Operation:
0] Rd « Rd-Rr-C

Syntax: Operands: Program Counter:
0] SBC Rd,Rr 0<d<31,0<r<31 PC - PC+1

16-bit Opcode:

| 0000 | 10rd | dddd | reer |

Status Register and Boolean Formula:

| T H S \% N Z Cc

=S < < < =S <

H: Rd3¢ Rr3 + Rr3¢ R3 + R3 *Rd3
Set if there was a borrow from bit 3; cleared otherwise

S: N OV, For signed tests.

V: Rd7 *Rr7+ R7 +Rd7 *Rr7 «R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7¢ R6 *R5¢ R4 R3 *R2¢ R1e RO Z
Previous value remains unchanged when the result is zero; cleared otherwise.

C: Rd7 ¢Rr7+ Rr7 «R7 +R7 *Rd7
Set if the absolute value of the contents of Rr plus previous carry is larger than the absolute value of the Rd; cleared
otherwise.

R (Result) equals Rd after the operation.

Example:
Subtract r1:r0 fromr3:r2
sub r2,r0 ; Subtract |ow byte
shc r3,rl ; Subtract with carry high byte

Words: 1 (2 bytes)
Cycles: 1

Alm L 115

0856D-AVR-08/02 I ®

ATMEL

SBCI — Subtract Immediate with Carry

Description:

Subtracts a constant from a register and subtracts with the C Flag and places the result in the destination register Rd.

Operation:
0] Rd « Rd-K-C

Syntax: Operands: Program Counter:
0] SBCI Rd,K 16<d<31,0<K< 255 PC - PC+1

16-bit Opcode:

| 0100 | KKKK | dddd | KKKK |

Status Register and Boolean Formula:

| T H S \% N Z Cc

=S < < < =S <

H: Rd3e K3 + K3+ R3 + R3 *Rd3
Set if there was a borrow from bit 3; cleared otherwise

S: N OV, For signed tests.

V: Rd7 «K7+ R7 +Rd7 +K7 *R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7¢ R6 *R5¢ R4e R3 *R2¢ R1e RO Z
Previous value remains unchanged when the result is zero; cleared otherwise.

C: Rd7 «K7+ K7 « R7 +R7 *Rd7
Set if the absolute value of the constant plus previous carry is larger than the absolute value of Rd; cleared other-
wise.

R (Result) equals Rd after the operation.

Example:
Subtract $4F23 fromr17:r16
subi r16, $23 ; Subtract |ow byte
sbci r17, $4F ; Subtract with carry high byte

Words: 1 (2 bytes)
Cycles: 1

116 AVR Instruction Set —— s
0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

SBI — Set Bit in I/O Register

Description:

Sets a specified bit in an I/O Register. This instruction operates on the lower 32 I/O Registers — addresses 0-31.

Operation:
(i) I/O(Ab) — 1

Syntax: Operands: Program Counter:
0] SBI Ab 0<A<31,0<b<s7 PC - PC+1

16-bit Opcode:

| 1001 | 1010 | AAAA| Abbb |

Status Register (SREG) and Boolean Formula:

| T H S \Y N Z
Example:
out $1E,r0 . Wite EEPROM address
sbi $1C 0 ; Set read bit in EECR
in rl, $1D ; Read EEPROM dat a

Words: 1 (2 bytes)
Cycles: 2

ATMEL

0856D-AVR-08/02 I ®

117

ATMEL

SBIC — Skip if Bit in I/0O Register is Cleared

Description:

This instruction tests a single bit in an I/O Register and skips the next instruction if the bit is cleared. This instruction oper-
ates on the lower 32 I/O Registers — addresses 0-31.

Operation:
() If /O(A,b) =0then PC - PC+2(or3)elsePC - PC+1
Syntax: Operands: Program Counter:
0] SBIC Ab 0<A<31,0<bs7 PC ~ PC + 1, Condition false - no skip

PC ~ PC + 2, Skip a one word instruction
PC ~ PC + 3, Skip a two word instruction

16-bit Opcode:

| 1001 | 1001 | AAAA| Abbb |

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
e2wait: shic $1C 1 ; Skip next inst. if EEWE cleared
rinp e2wait ; EEPROM write not finished
nop ; Continue (do not hing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false (no skip)
2 if condition is true (skip is executed) and the instruction skipped is 1 word
3 if condition is true (skip is executed) and the instruction skipped is 2 words

118 AVR Instruction Set —— s
0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

SBIS — Skip if Bit in I/O Register is Set

Description:

This instruction tests a single bit in an I/O Register and skips the next instruction if the bit is set. This instruction operates on

the lower 32 1/0 Registers — addresses 0-31.

Operation:
() If /O(A,b) =1then PC - PC+2(or3)elsePC - PC+1
Syntax: Operands: Program Counter:
0] SBIS Ab 0<A<31,0<bs7 PC ~ PC + 1, Condition false - no skip

PC ~ PC + 2, Skip a one word instruction
PC ~ PC + 3, Skip a two word instruction

16-bit Opcode:

| 1001 | 1011 | AAAA| Abbb |

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
wai tset: sbhis $10,0 ; Skip next inst. if bit O in Port D set
rjnp waitset ; Bit not set
nop ; Continue (do not hing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false (no skip)
2 if condition is true (skip is executed) and the instruction skipped is 1 word
3 if condition is true (skip is executed) and the instruction skipped is 2 words

ATMEL

0856D—-AVR—-08/02 I

119

ATMEL

SBIW — Subtract Immediate from Word

Description:

Subtracts an immediate value (0-63) from a register pair and places the result in the register pair. This instruction operates
on the upper four register pairs, and is well suited for operations on the Pointer Registers.

This instruction is not available in all devices. Refer to the device specific instruction set summary.

Operation:
(i) Rd+1:Rd « Rd+1:Rd - K

Syntax: Operands: Program Counter:
0] SBIW Rd+1:Rd,K d {24,26,28,30}, 0 < K< 63 PC -« PC+1

16-bit Opcode:

| 1001 | 0111 | KKdd | KKKK |

Status Register (SREG) and Boolean Formula:

I T H S \% N z C
S: N OV, For signed tests.
V: Rdh7 «R15

Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R15
Set if MSB of the result is set; cleared otherwise.

Z: R15¢ R14 *R13 *R12 *R11+ R10* R9* R8¢ R7+* R6 *R5+ R4¢ R3 *R2¢ R1* RO
Set if the result is $0000; cleared otherwise.

C: R15¢ Rdh7
Set if the absolute value of K is larger than the absolute value of Rd; cleared otherwise.

R (Result) equals Rdh:Rdl after the operation (Rdh7-Rdh0 = R15-R8, RdI7-RdI0=R7-R0).

Example:
shiw r25:r24,1 ; Subtract 1 fromr25:r24
shiw YH: YL, 63 ; Subtract 63 fromthe Y-pointer(r29:r28)

Words: 1 (2 bytes)
Cycles: 2

120 AVR Instruction Set —— s
0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

SBR — Set Bits in Register

Description:

Sets specified bits in register Rd. Performs the logical ORI between the contents of register Rd and a constant mask K and

places the result in the destination register Rd.

Operation:
() Rd « Rd v K
Syntax: Operands: Program Counter:
(i) SBR Rd,K 16<d<31,0<K< 255 PC -« PC+1
16-bit Opcode:
| 0110 | KKKK | dddd | KKKK |
Status Register (SREG) and Boolean Formula:
I T H S \Y, N C
— — — < O < —
S: N OV, For signed tests.
V: 0
Cleared
N: R7

Set if MSB of the result is set; cleared otherwise.

Z: R7¢ R6 *R5¢ R4+ R3 +R2+ R1+ RO
Set if the result is $00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:

sbr rl6, 3 ; Set bits 0 and 1 in ri6

sbr rl7,$F0 ; Set 4 MSB in r17

Words: 1 (2 bytes)
Cycles: 1

ATMEL

0856D-AVR-08/02 I

®

121

ATMEL

SBRC — Skip if Bit in Register is Cleared

Description:

This instruction tests a single bit in a register and skips the next instruction if the bit is cleared.

Operation:
0] If Rr(b) =0 then PC - PC+2(or3)else PC -« PC+1
Syntax: Operands: Program Counter:

(i) SBRC Rr,b 0<r<31,0<bs7

16-bit Opcode:

| 1111 | 110r | reer | Obbb |

Status Register (SREG) and Boolean Formula:

PC —~ PC + 1, Condition false - no skip
PC ~ PC + 2, Skip a one word instruction
PC ~ PC + 3, Skip a two word instruction

| T H S \% N Zz C
Example:
sub rO,rl Subtract r1 fromrO
sbrc r0,7 Skip if bit 7 in r0 cleared
sub r0,r1 Only executed if bit 7 in r0 not cleared
nop Conti nue (do not hing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false (no skip)

2 if condition is true (skip is executed) and the instruction skipped is 1 word
3 if condition is true (skip is executed) and the instruction skipped is 2 words

122

AVR Instruction Set e ———

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

SBRS — Skip if Bit in Register is Set

Description:

This instruction tests a single bit in a register and skips the next instruction if the bit is set.

Operation:
0] If Rr(b) =1 then PC - PC+2 (or3)else PC -« PC+1
Syntax: Operands: Program Counter:
0] SBRS Rr,b 0<r<31,0<bs7 PC ~ PC + 1, Condition false - no skip

16-bit Opcode:

| 1111 | 111r | reer | Obbb |

Status Register (SREG) and Boolean Formula:

PC ~ PC + 2, Skip a one word instruction
PC ~ PC + 3, Skip a two word instruction

| T H S \% N Zz C
Example:
sub r0,rl1 ; Subtract rl fromrO
sbrs ro, 7 ; Skipif bit 7 inr0 set
neg ro ; Only executed if bit 7 in r0 not set
nop ; Continue (do not hing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false (no skip)

2 if condition is true (skip is executed) and the instruction skipped is 1 word
3 if condition is true (skip is executed) and the instruction skipped is 2 words

0856D-AVR-08/02

ATMEL

Y R

123

ATMEL

SEC — Set Carry Flag

Description:
Sets the Carry Flag (C) in SREG (Status Register).

Operation:
(i) C-1

Syntax: Operands: Program Counter:
0] SEC None PC - PC+1

16-bit Opcode:

| 1001 | 0100 | 0000 | 1000 |

Status Register (SREG) and Boolean Formula:

| T H S \% N Z Cc

C: 1
Carry Flag set

Example:
sec ; Set Carry Flag
adc ro,r1 ; rO0=r0+r1+1

Words: 1 (2 bytes)
Cycles: 1

124 AVR Instruction Set —— s
0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

SEH — Set Half Carry Flag

Description:
Sets the Half Carry (H) in SREG (Status Register).

Operation:
0] H-1

Syntax: Operands: Program Counter:
0] SEH None PC - PC+1

16-bit Opcode:

| 1001 | 0100 | 0101 | 1000 |

Status Register (SREG) and Boolean Formula:

| T H S \% N Z

- - 1 - - - -

H: 1
Half Carry Flag set

Example:
seh ; Set Half Carry Flag

Words: 1 (2 bytes)
Cycles: 1

ATMEL

0856D-AVR-08/02 I ®

125

ATMEL

SEI — Set Global Interrupt Flag

Description:

Sets the Global Interrupt Flag (1) in SREG (Status Register). The instruction following SEI will be executed before any pend-
ing interrupts.

Operation:
(i) |1

Syntax: Operands: Program Counter:
() SEI None PC -« PC+1

16-bit Opcode:

| 1001 | 0100 | 0111 | 1000 |

Status Register (SREG) and Boolean Formula:

| T H S \% N Z C
1 — — — — — — —
I: 1
Global Interrupt Flag set
Example:
sei ; set global interrupt enable
sl eep ; enter sleep, waiting for interrupt

note: will enter sleep before any pending interrupt(s)

Words: 1 (2 bytes)
Cycles: 1

126 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

SEN — Set Negative Flag

Description:

Sets the Negative Flag (N) in SREG (Status Register).

Operation:
(i) N1

Syntax: Operands: Program Counter:
() SEN None PC -« PC+1

16-bit Opcode:

| 1001 | 0100 | 0010 | 1000 |

Status Register (SREG) and Boolean Formula:

| T H S \% N Z

- - - - - 1 -

N: 1
Negative Flag set

Example:
add r2,r19 ; Add r19 to r2
sen ; Set Negative Flag

Words: 1 (2 bytes)
Cycles: 1

ATMEL

0856D-AVR-08/02 I ®

127

ATMEL

SER — Set all Bits in Register

Description:

Loads $FF directly to register Rd.

Operation:
(i) Rd — $FF

Syntax: Operands: Program Counter:
0] SER Rd 16<d<31l PC - PC+1

16-bit Opcode:

| 1110 | 1111 | dddd | 1111 |

Status Register (SREG) and Boolean Formula:

| T H S V N Zz C
Example:
clr ril6 ; Clear rlé
ser ri17 ; Set rl7
out $18,r16 ; Wite zeros to Port B
nop ; Delay (do not hing)
out $18,r17 ; Wite ones to Port B

Words: 1 (2 bytes)
Cycles: 1

128 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

SES - Set Signed Flag

Description:

Sets the Signed Flag (S) in SREG (Status Register).

Operation:
0] S~1
Syntax: Operands: Program Counter:
0] SES None PC - PC+1
16-bit Opcode:
| 1001 | 0100 | 0100 | 1000 |
Status Register (SREG) and Boolean Formula:
| T H S V N VA C
— — — 1 — — — —
S: 1
Signed Flag set
Example:
add r2,r19 ; Add r19 tor2
ses ; Set Negative Flag

Words: 1 (2 bytes)
Cycles: 1

0856D-AVR-08/02

ATMEL

Y R

129

ATMEL

SET — Set T Flag

Description:
Sets the T Flag in SREG (Status Register).

Operation:
0] T-1

Syntax: Operands: Program Counter:
0] SET None PC - PC+1

16-bit Opcode:

| 1001 | 0100 | 0110 | 1000 |

Status Register (SREG) and Boolean Formula:

| T H S \Y, N z C
— 1 — — — — — —
T: 1
T Flag set
Example:
set ; Set T Flag

Words: 1 (2 bytes)
Cycles: 1

130 AVR Instruction Set —— s
0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

SEV - Set Overflow Flag

Description:
Sets the Overflow Flag (V) in SREG (Status Register).

Operation:
(i) Vel

Syntax: Operands: Program Counter:
() SEV None PC -« PC+1

16-bit Opcode:

| 1001 | 0100 | 0011 | 1000 |

Status Register (SREG) and Boolean Formula:

| T H S \% N Z

- - - - 1 - -

V: 1
Overflow Flag set

Example:
add r2,r19 ; Add r19 to r2
sev ; Set Overflow Flag

Words: 1 (2 bytes)
Cycles: 1

ATMEL

0856D-AVR-08/02 I ®

131

ATMEL

SEZ — Set Zero Flag

Description:
Sets the Zero Flag (Z) in SREG (Status Register).

Operation:
(i) Z-1

Syntax: Operands: Program Counter:
() SEZ None PC -« PC+1

16-bit Opcode:

| 1001 | 0100 | 0001 | 1000 |

Status Register (SREG) and Boolean Formula:

| T H S \% N Z Cc

- - - - - - 1 -

Z: 1
Zero Flag set

Example:
add r2,r19 ; Add r19 to r2
sez ; Set Zero Flag

Words: 1 (2 bytes)
Cycles: 1

132 AVR Instruction Set —— s
0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

SLEEP

Description:

This instruction sets the circuit in sleep mode defined by the MCU Control Register.

Operation:
Refer to the device documentation for detailed description of SLEEP usage.

Syntax: Operands: Program Counter:
SLEEP None PC - PC+1

16-bit Opcode:

| 1001 | 0101 | 1000 | 1000 |

Status Register (SREG) and Boolean Formula:

| T H S \% N Zz C
Example:
nmov ro,ri11 ; Copy r11 to rO
I di r16, (1<<SE) ; Enable sl eep node
out MCUCR, r16
sl eep ; Put MCU in sleep node

Words: 1 (2 bytes)
Cycles: 1

Alm L 133

0856D-AVR-08/02 I ©

ATMEL

SPM — Store Program Memory

Description:

SPM can be used to erase a page in the Program memory, to write a page in the Program memory (that is already erased),
and to set Boot Loader Lock bits. In some devices, the Program memory can be written one word at a time, in other devices
an entire page can be programmed simultaneously after first filling a temporary page buffer. In all cases, the Program
memory must be erased one page at a time. When erasing the Program memory, the RAMPZ and Z-register are used as
page address. When writing the Program memory, the RAMPZ and Z-register are used as page or word address, and the
R1:RO register pair is used as data®. When setting the Boot Loader Lock bits, the R1:R0 register pair is used as data.
Refer to the device documentation for detailed description of SPM usage. This instruction can address the entire Program
memory.

This instruction is not available in all devices. Refer to the device specific instruction set summary.
Note: 1. R1 determines the instruction high byte, and RO determines the instruction low byte.

Operation: Comment:
0] (RAMPZ:Z) ~ S$ffff Erase Program memory page
(D) (RAMPZ:Z) —~ R1:RO Write Program memory word
(iii) (RAMPZ:Z) —~ R1:RO Write temporary page buffer
(iv) (RAMPZ:Z) — TEMP Write temporary page buffer to Program memory
(V) BLBITS ~ R1:RO Set Boot Loader Lock bits
Syntax: Operands: Program Counter:
()-(v) SPM None PC - PC+1

16-bit Opcode:

| 1001 | 0101 | 1110 1000

Status Register (SREG) and Boolean Formula:

| T H S \% N Z Cc

Example:

; This exanpl e shows SPMwite of one page for devices with page wite

;- the routine wites one page of data from RAMto Fl ash
the first data location in RAMis pointed to by the Y-pointer
the first data location in Flash is pointed to by the Z-pointer

;- error handling is not included

;- the routine nmust be placed inside the boot space
(at least the do_spm sub routine)

;- registers used: r0, r1, tenpl, tenp2, looplo, |oophi, spntrval
(tenmpl, tenp2, |ooplo, |oophi, spntrval nust be defined by the user)
storing and restoring of registers is not included in the routine
regi ster usage can be optinized at the expense of code size

. equPAGCESI ZEB = PAGESI ZE*2; PAGESI ZEB i s page size in BYTES, not words
.org SMALLBOOTSTART
wite_page:

134 AVR Instruction Set —— s
0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

; page erase
I di spnerval, (1<<PGERS) + (1<<SPMEN)
cal | do_spm

;transfer data from RAMto Flash page buffer

I di | oopl o, | oW PAGESI ZEB);init |oop variable

I di | oophi, hi gh(PAGESI ZEB); not required for PAGESI ZEB<=256
wr | oop: 1 dr0O, Y+

ldrl, Y+

I di spnerval, (1<<SPMEN)

cal | do_spm

adi wZH: ZL, 2

sbi W oophi : |1 oopl 0, 2;use subi for PAGESI ZEB<=256

brnewr | oop

;execute page wite

subi ZL, | owm PAGESI ZEB); restore pointer

sbci ZH, hi gh(PAGESI ZEB) ; not required for PAGESI ZEB<=256
I di spnerval, (1<<PGWART) + (1<<SPMEN)

cal | do_spm

;read back and check, optional
I di | oopl o, | ow(PAGESI ZEB);init |oop variable
I di | oophi, hi gh(PAGESI ZEB); not required for PAGESI ZEB<=256
subi YL, | owm PAGESI ZEB); restore pointer
sbci YH, hi gh(PAGESI ZEB)
rdl oop: | pnr0, Z+
ldrl, Y+
cpser0, r1
j mperror
sbi W oophi : |1 oopl 0, 2;use subi for PAGESI ZEB<=256
br nerdl oop

,return
ret

do_spm
;input: spntrval determ nes SPM action
;disable interrupts if enabled, store status
intenp2, SREG
cli
; check for previous SPM conpl ete
wai t:intenmpl, SPMCR
sbrctenpl, SPMEN
rj mpwait
; SPM tined sequence
out SPMCR, spncrval
spm
;restore SREG (to enable interrupts if originally enabl ed)

out SREG, tenp2
AIMEL

0856D-AVR-08/02 I ©

135

ATMEL

ret

Words: 1 (2 bytes)
Cycles: depends on the operation

136 AVR Instruction Set —— s
0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

ST — Store Indirect From Register to Data Space using Index X

Description:

Stores one byte indirect from a register to data space. For parts with SRAM, the data space consists of the Register File,
I/O memory and internal SRAM (and external SRAM if applicable). For parts without SRAM, the data space consists of the
Register File only. The EEPROM has a separate address space.

The data location is pointed to by the X (16 bits) Pointer Register in the Register File. Memory access is limited to the cur-
rent data segment of 64K bytes. To access another data segment in devices with more than 64K bytes data space, the
RAMPX in register in the I/O area has to be changed.

The X-pointer Register can either be left unchanged by the operation, or it can be post-incremented or pre-decremented.
These features are especially suited for accessing arrays, tables, and Stack Pointer usage of the X-pointer Register. Note
that only the low byte of the X-pointer is updated in devices with no more than 256 bytes data space. For such devices, the
high byte of the pointer is not used by this instruction and can be used for other purposes. The RAMPX Register in the /O
area is updated in parts with more than 64K bytes data space or more than 64K bytes Program memory, and the incre-
ment/ decrement is added to the entire 24-bit address on such devices.

Not all variants of this instruction is available in all devices. Refer to the device specific instruction set summary.

The result of these combinations is undefined:

ST X+, 126
ST X+, r27
ST -X, r26
ST -X, r27

Using the X-pointer:

Operation: Comment:
() (X) « Rr X: Unchanged
(i) (X) « Rr X « X+1 X: Post incremented
(iii) X e« X-1 (X) « Rr X: Pre decremented
Syntax: Operands: Program Counter:
0] ST X, Rr 0<r<31 PC -« PC+1
(i) ST X+, Rr 0<r<31 PC -« PC+1
(iii) ST -X, Rr 0<r<31 PC -« PC+1
16-bit Opcode :
(i) 1001 001r rrrr 1100
(ii) 1001 001r rrrr 1101
(iii) 1001 001r rrrr 1110
Status Register (SREG) and Boolean Formula:
| T H S \% N C

0856D-AVR-08/02

ATMEL

®

137

Example:

Words: 1 (2 bytes)
Cycles: 2

138

clr
I di
st
st
I di
st
st

r27
r26, $60
X+, 10
X rl
r26, $63
X r2
-Xr3

C ear
Set X
Store
Store
Set X
Store
Store

ATMEL

X high byte

| ow byte to $60
r0 in data space
rl in data space
| ow byte to $63
r2 in data space
r3 in data space

| oc.
| oc.

| oc.
| oc.

$60(X post inc)
$61

$63
$62(X pre dec)

AVR Instruction Set e ———

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

ST (STD) — Store Indirect From Register to Data Space using Index Y

Description:

Stores one byte indirect with or without displacement from a register to data space. For parts with SRAM, the data space
consists of the Register File, /O memory and internal SRAM (and external SRAM if applicable). For parts without SRAM,
the data space consists of the Register File only. The EEPROM has a separate address space.

The data location is pointed to by the Y (16 bits) Pointer Register in the Register File. Memory access is limited to the cur-
rent data segment of 64K bytes. To access another data segment in devices with more than 64K bytes data space, the
RAMPY in register in the I/O area has to be changed.

The Y-pointer Register can either be left unchanged by the operation, or it can be post-incremented or pre-decremented.
These features are especially suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer Register. Note
that only the low byte of the Y-pointer is updated in devices with no more than 256 bytes data space. For such devices, the
high byte of the pointer is not used by this instruction and can be used for other purposes. The RAMPY Register in the /O
area is updated in parts with more than 64K bytes data space or more than 64K bytes Program memory, and the incre-
ment/ decrement/displacement is added to the entire 24-bit address on such devices.

Not all variants of this instruction is available in all devices. Refer to the device specific instruction set summary.

The result of these combinations is undefined:

ST Y+, 128
ST Y+, 129
ST -Y, r28
ST -Y, r29

Using the Y-pointer:

Operation: Comment:

() (Y) « Rr Y: Unchanged

(i) (Y) « Rr Y « Y+1 Y: Post incremented

(iii) Y-Y-1 (Y) « Rr Y: Pre decremented

(iiii) (Y+g) < Rr Y: Unchanged, g: Displacement
Syntax: Operands: Program Counter:

(i) STY,Rr 0<r<31 PC -« PC+1

(ii) ST Y+, Rr 0<r<31 PC -« PC+1

(iii) ST-Y,Rr 0<r<31 PC -« PC+1

(i) ~ STD Y+q, Rr 0<r<31,0<q<63 PC -« PC+1

16-bit Opcode:

(i) 1000 001r rrrr 1000
(ii) 1001 001r rrrr 1001
(iii) 1001 001r rrrr 1010
(iiii) 10q0 qqlr rrrr 1qqq

Alm L 139

0856D-AVR-08/02 I ©

Status Register (SREG) and Boolean Formula:

| T H S \% N VA C
Example:
clr r29 Clear Y high byte
| di r28, $60 Set Y low byte to $60
st Y+, 10 Store r0 in data space loc. $60(Y post inc)
st Y, rl Store rl in data space loc. $61
| di r28, $63 Set Y low byte to $63
st Y, r2 Store r2 in data space loc. $63
st -Y, r3 Store r3 in data space loc. $62(Y pre dec)
std Y+2, 14 Store r4 in data space |loc. $64

Words: 1 (2 bytes)
Cycles: 2

140 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

ST (STD) — Store Indirect From Register to Data Space using Index Z

Description:

Stores one byte indirect with or without displacement from a register to data space. For parts with SRAM, the data space
consists of the Register File, /O memory and internal SRAM (and external SRAM if applicable). For parts without SRAM,
the data space consists of the Register File only. The EEPROM has a separate address space.

The data location is pointed to by the Z (16 bits) Pointer Register in the Register File. Memory access is limited to the cur-
rent data segment of 64K bytes. To access another data segment in devices with more than 64K bytes data space, the
RAMPZ in register in the 1/O area has to be changed.

The Z-pointer Register can either be left unchanged by the operation, or it can be post-incremented or pre-decremented.
These features are especially suited for Stack Pointer usage of the Z-pointer Register, however because the Z-pointer
Register can be used for indirect subroutine calls, indirect jumps and table lookup, it is often more convenient to use the X
or Y-pointer as a dedicated Stack Pointer. Note that only the low byte of the Z-pointer is updated in devices with no more
than 256 bytes data space. For such devices, the high byte of the pointer is not used by this instruction and can be used for
other purposes. The RAMPZ Register in the I/O area is updated in parts with more than 64K bytes data space or more than
64K bytes Program memory, and the increment/decrement/displacement is added to the entire 24-bit address on such
devices.

Not all variants of this instruction is available in all devices. Refer to the device specific instruction set summary.

The result of these combinations is undefined:
ST Z+, r30
ST Z+, r31
ST -Z, r30
ST -Z,r31

Using the Z-pointer:

Operation: Comment:

() (2) «Rr Z: Unchanged

(i) (2) « Rr Z -~ Z+1 Z: Post incremented

(iii) Z~2-1 (2) « Rr Z: Pre decremented

(iiii) (Z+q) < Rr Z: Unchanged, g: Displacement
Syntax: Operands: Program Counter:

(i) ST Z, Rr 0<r<31 PC -« PC+1

(ii) ST Z+, Rr 0<r<31 PC -« PC+1

(iii) ST-Z,Rr 0<r<31 PC -« PC+1

(i) ~ STD Z+q, Rr 0<r<31,0<q<63 PC -« PC+1

Alm L 141

0856D-AVR-08/02 I ®

16-bit Opcode :

ATMEL

(i) 1000 001r rrrr 0000
(ii) 1001 001r rrrr 0001
(iii) 1001 001r rrrr 0010
(iiii) 10q0 qqlr rrrr 0qqq

Status Register (SREG) and Boolean Formula:

| T H S \% N VA C
Example:
clr r31 Clear Z high byte
| di r 30, $60 Set Z low byte to $60
st Z+, 10 Store r0 in data space loc. $60(Z post inc)
st Z,rl Store rl in data space loc. $61
| di r 30, $63 Set Z low byte to $63
st Z,r2 Store r2 in data space loc. $63
st -Z,r3 Store r3 in data space loc. $62(Z pre dec)
std Z+2, 14 Store r4 in data space |loc. $64

Words: 1 (2 bytes)

Cycles: 2

142

AVR Instruction Set e ———

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

STS — Store Direct to Data Space

Description:

Stores one byte from a Register to the data space. For parts with SRAM, the data space consists of the Register File, I/O
memory and internal SRAM (and external SRAM if applicable). For parts without SRAM, the data space consists of the
Register File only. The EEPROM has a separate address space.

A 16-bit address must be supplied. Memory access is limited to the current data segment of 64K bytes. The STS instruction
uses the RAMPD Register to access memory above 64K bytes. To access another data segment in devices with more than
64K bytes data space, the RAMPD in register in the 1/O area has to be changed.

This instruction is not available in all devices. Refer to the device specific instruction set summary.

Operation:
0] (k) « Rr

Syntax:

Operands:

Program Counter:

0] STS k,Rr 0<r<31,0<k<65535 PC -« PC+2
32-bit Opcode:
1001 001d dddd 0000
kkkk kkkk kkkk kkkk
Status Register (SREG) and Boolean Formula:
| T H S \% N 4 C
Example:
I ds r2, $FF00 Load r2 with the contents of data space |ocation $FF00
add r2,rl ; add rl1 tor2
sts $FF00, r 2 ; Wite back

Words: 2 (4 bytes)

Cycles: 2

0856D-AVR-08/02

ATMEL

I)

143

ATMEL

SUB - Subtract without Carry

Description:

Subtracts two registers and places the result in the destination register Rd.

Operation:
(i) Rd « Rd - Rr

Syntax: Operands: Program Counter:
0] SUB Rd,Rr 0<d<31,0<r<31 PC - PC+1

16-bit Opcode:

| 0001 | 10rd | dddd | rrer |

Status Register and Boolean Formula:

| T H S \% N Z Cc

=S < < < =S <

H: Rd3¢ Rr3 +Rr3 «R3 +R3¢ Rd3
Set if there was a borrow from bit 3; cleared otherwise

S: N OV, For signed tests.

V: Rd7¢ Rr7 *R7 +Rd7 *Rr7¢ R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7¢ R6 *R5¢ R4 R3 +R2+ R1s RO
Set if the result is $00; cleared otherwise.

C: Rd7e¢ Rr7 +Rr7 «R7 +R7+ Rd7
Set if the absolute value of the contents of Rr is larger than the absolute value of Rd; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
sub r13,ri12 ; Subtract r12 fromr13
brne not eq ; Branch if r12<>r13
not eq: nop ; Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1

144 AVR Instruction Set —— s
0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

SUBI — Subtract Immediate

Description:

Subtracts a register and a constant and places the result in the destination register Rd. This instruction is working on Reg-
ister R16 to R31 and is very well suited for operations on the X, Y and Z-pointers.

Operation:
0] Rd « Rd-K

Syntax: Operands: Program Counter:
0] SUBI Rd,K 16<d<31,0<K< 255 PC -« PC+1

16-bit Opcode:

| 0101 | KKKK | dddd | KKKK |

Status Register and Boolean Formula:

| T H S \% N Z Cc

=S < < < =S <

H: Rd3e K3+K3 ¢«R3 +R3 «Rd3
Set if there was a borrow from bit 3; cleared otherwise

S: N OV, For signed tests.

V: Rd7s K7 «R7 +Rd7+ K7 *R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7¢ R6 *R5¢ R4 R3 *R2+ R1+ RO
Set if the result is $00; cleared otherwise.

C: Rd7e K7 +K7 «R7 +R7+ Rd7
Set if the absolute value of K is larger than the absolute value of Rd; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
subi r22,%$11 ; Subtract $11 fromr22
brne not eq ; Branch if r22<>$11
not eq: nop ; Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1

Alm L 145

0856D-AVR-08/02 I ®

SWAP — Swap Nibbles

ATMEL

Description:

Swaps high and low nibbles in a register.

Operation:
0] R(7:4) « Rd(3:0), R(3:0) — Rd(7:4)

Syntax: Operands:
0] SWAP Rd 0<d<31

16-bit Opcode:

| 1001 | 010d | dddd | 0010 |

Status Register and Boolean Formula:

| T H S \%

Program Counter:
PC - PC+1

R (Result) equals Rd after the operation.

Example:
inc rl ; Increment rl
swap rl ; Swap high and low nibble of rl
inc ri ; Increnent high nibble of ri1
swap rl ;. Swap back

Words: 1 (2 bytes)
Cycles: 1

146 AVR Instruction Set s

0856D-AVR-08/02

EEEEssssssssssssssssssssssssssessssssssmsmmm A\ \/R INStruction Set

TST — Test for Zero or Minus

Description:

Tests if a register is zero or negative. Performs a logical AND between a register and itself. The register will remain
unchanged.

Operation:
0] Rd « Rd e+ Rd

Syntax: Operands: Program Counter:
0] TSTRd 0<sd<31 PC - PC+1

16-bit Opcode: (see AND Rd, Rd)

| 0010 | 00dd | dddd | dddd |

Status Register and Boolean Formula:

I T H S \% N z C
— — — =S O =S = —
S: N OV, For signed tests.
V: 0
Cleared
N: R7

Set if MSB of the result is set; cleared otherwise.

Z: R7¢ R6 *R5¢ R4+ R3 +R2+ R1+ RO
Set if the result is $00; cleared otherwise.

R (Result) equals Rd.

Example:
tst ro ; Test r0
breq zero ; Branch if r0=0
zero: nop ; Branch destination (do not hing)

Words: 1 (2 bytes)
Cycles: 1

Alm L 147

0856D-AVR-08/02 I ®

ATMEL

WDR — Watchdog Reset

Description:

This instruction resets the Watchdog Timer. This instruction must be executed within a limited time given by the WD pres-
caler. See the Watchdog Timer hardware specification.

Operation:
0] WD timer restart.

Syntax: Operands: Program Counter:
0] WDR None PC - PC+1

16-bit Opcode:

| 1001 | 0101 | 1010 | 1000 |

Status Register and Boolean Formula:

| T H S \% N Z Cc

Example:
wdr ; Reset watchdog tiner

Words: 1 (2 bytes)
Cycles: 1

148 AVR Instruction Set —— s
0856D-AVR-08/02

AIMEL

I 7

Atmel Headquarters

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg.

1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan

TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

RF/Automotive

Theresienstrasse 2
Postfach 3535

74025 Heilbronn, Germany
TEL (49) 71-31-67-0

FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300

FAX 1(719) 540-1759

La Chantrerie Biometrics/Imaging/Hi-Rel MPU/
BP 70602 High Speed Converters/RF Datacom
44306 Nantes Cedex 3, France Avenue de Rochepleine
TEL (33) 2-40-18-18-18 BP 123
FAX (33) 2-40-18-19-60 38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
ASIC/ASSP/Smart Cards FAX (33) 4-76-58-34-80
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300

FAX 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building

East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000

FAX (44) 1355-242-743

© Atmel Corporation 2002.

e-mail
literature@atmel.com

Web Site
http://iwww.atmel.com

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel's Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

ATMEL® and AVR® are the registered trademarks of Atmel.

Other terms and product names may be the trademarks of others.

@ Printed on recycled paper.

0856D-AVR-08/02 oM

	Instruction Set Nomenclature
	I/O Registers
	The Program and Data Addressing Modes
	Conditional Branch Summary
	Complete Instruction Set Summary
	ADC – Add with Carry
	ADD – Add without Carry
	ADIW – Add Immediate to Word
	AND – Logical AND
	ANDI – Logical AND with Immediate
	ASR – Arithmetic Shift Right
	BCLR – Bit Clear in SREG
	BLD – Bit Load from the T Flag in SREG to a Bit in Register
	BRBC – Branch if Bit in SREG is Cleared
	BRBS – Branch if Bit in SREG is Set
	BRCC – Branch if Carry Cleared
	BRCS – Branch if Carry Set
	BREAK – Break
	BREQ – Branch if Equal
	BRGE – Branch if Greater or Equal (Signed)
	BRHC – Branch if Half Carry Flag is Cleared
	BRHS – Branch if Half Carry Flag is Set
	BRID – Branch if Global Interrupt is Disabled
	BRIE – Branch if Global Interrupt is Enabled
	BRLO – Branch if Lower (Unsigned)
	BRLT – Branch if Less Than (Signed)
	BRMI – Branch if Minus
	BRNE – Branch if Not Equal
	BRPL – Branch if Plus
	BRSH – Branch if Same or Higher (Unsigned)
	BRTC – Branch if the T Flag is Cleared
	BRTS – Branch if the T Flag is Set
	BRVC – Branch if Overflow Cleared
	BRVS – Branch if Overflow Set
	BSET – Bit Set in SREG
	BST – Bit Store from Bit in Register to T Flag in SREG
	CALL – Long Call to a Subroutine
	CBI – Clear Bit in I/O Register
	CBR – Clear Bits in Register
	CLC – Clear Carry Flag
	CLH – Clear Half Carry Flag
	CLI – Clear Global Interrupt Flag
	CLN – Clear Negative Flag
	CLR – Clear Register
	CLS – Clear Signed Flag
	CLT – Clear T Flag
	CLV – Clear Overflow Flag
	CLZ – Clear Zero Flag
	COM – One’s Complement
	CP – Compare
	CPC – Compare with Carry
	CPI – Compare with Immediate
	CPSE – Compare Skip if Equal
	DEC – Decrement
	EICALL – Extended Indirect Call to Subroutine
	EIJMP – Extended Indirect Jump
	ELPM – Extended Load Program Memory
	EOR – Exclusive OR
	FMUL – Fractional Multiply Unsigned
	FMULS – Fractional Multiply Signed
	FMULSU – Fractional Multiply Signed with Unsigned
	ICALL – Indirect Call to Subroutine
	IJMP – Indirect Jump
	IN - Load an I/O Location to Register
	INC – Increment
	JMP – Jump
	LD – Load Indirect from Data Space to Register using Index X
	LD (LDD) – Load Indirect from Data Space to Register using Index Y
	LD (LDD) – Load Indirect From Data Space to Register using Index Z
	LDI – Load Immediate
	LDS – Load Direct from Data Space
	LPM – Load Program Memory
	LSL – Logical Shift Left
	LSR – Logical Shift Right
	MOV – Copy Register
	MOVW – Copy Register Word
	MUL – Multiply Unsigned
	MULS – Multiply Signed
	MULSU – Multiply Signed with Unsigned
	NEG – Two’s Complement
	NOP – No Operation
	OR – Logical OR
	ORI – Logical OR with Immediate
	OUT – Store Register to I/O Location
	POP – Pop Register from Stack
	PUSH – Push Register on Stack
	RCALL – Relative Call to Subroutine
	RET – Return from Subroutine
	RETI – Return from Interrupt
	RJMP – Relative Jump
	ROL – Rotate Left trough Carry
	ROR – Rotate Right through Carry
	SBC – Subtract with Carry
	SBCI – Subtract Immediate with Carry
	SBI – Set Bit in I/O Register
	SBIC – Skip if Bit in I/O Register is Cleared
	SBIS – Skip if Bit in I/O Register is Set
	SBIW – Subtract Immediate from Word
	SBR – Set Bits in Register
	SBRC – Skip if Bit in Register is Cleared
	SBRS – Skip if Bit in Register is Set
	SEC – Set Carry Flag
	SEH – Set Half Carry Flag
	SEI – Set Global Interrupt Flag
	SEN – Set Negative Flag
	SER – Set all Bits in Register
	SES – Set Signed Flag
	SET – Set T Flag
	SEV – Set Overflow Flag
	SEZ – Set Zero Flag
	SLEEP
	SPM – Store Program Memory
	ST – Store Indirect From Register to Data Space using Index X
	ST (STD) – Store Indirect From Register to Data Space using Index Y
	ST (STD) – Store Indirect From Register to Data Space using Index Z
	STS – Store Direct to Data Space
	SUB – Subtract without Carry
	SUBI – Subtract Immediate
	SWAP – Swap Nibbles
	TST – Test for Zero or Minus
	WDR – Watchdog Reset

